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Journal 3, Creation of device drivers and applications 

1 Objectives 
To use the Spartan3 PCI Express Starter kit, some device drivers are needed. The objective of this 
journal is to describe the creation of such drivers for both Windows XP and Linux 2.6 that allows 
other applications to read from and write to registers on the board. 

2 Problem analysis 
The Spartan3 PCI Express Starter kit includes a demo application for Windows. The demo 
application consists of the following: 
 
- A Windows device driver for the board, providing functions for setting and retrieving the state 

of the leds, and retrieving the state of the buttons. The driver is written using C. 
- A small application with a GUI, which allows a user to interact with the board. The application 

is written in Visual Basic, and accesses the device driver through drivermanager.dll (the 
sourcecode for the .dll is unavailable). 

 
The source code for this, except the interface between the application and the device driver, is 
available in the “Tools\Spartan3 PCI Express Starter kit Demo” folder on CD1. 
The Windows driver will need a few modifications, for instance the addition of a few primitive 
functions for reading and writing single registers, but is, apart from that, useable. For Linux, a 
driver will need to be written from scratch. 
The Windows application is close to useless, as SDU does not use Visual Basic (and so there is no 
developing environment available), and as C/C++ is the preferred language for the application 
anyway. So instead a new application will be written from scratch using C/C++. The same goes for 
the Linux versions. The applications will be created as console applications, to avoid spending too 
much time with GUIs. 
So the following needs to be done or created: 
 
- The existing Windows device driver from the demo needs to be modified, by adding 

functionality to set and get single registers directly. 
- A Windows console application, which can use the device driver to communicate with the 

Spartan3 board. 
- A Linux 2.6 device driver with functionality for setting and getting registers needs to be 

created. 
- A Linux console application that can access the functionality of the device driver and 

communicate with the Spartan3 board. 
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3 Device driver basics 
A typical workflow for a PCI/PCI Express device driver can be seen on figure 3.a. 
 
 
 
 
 
 

Figure 3.a: A typical flow for a PCI/PCI Express device driver. 
 
A device driver needs a specified entry function that is run when the driver is loaded. This entry 
function is then responsible for making sure that the necessary initialization is performed.  
First, the supported hardware needs to be found. This is usually done by searching for a specific 
Vendor and Device ID (as specified in the configuration header of the PCI/PCI Express device) 
amongst the devices on the PCI/PCI Express bus. 
If one or more devices are found, these need to be initialized, and their resources (BARs) need to be 
mapped to the memory range of the host OS. 
The third step is to tell the host OS about the functionality this driver provides to other applications, 
so that these can access the driver. This is typically done through a special structure, in which a 
function pointer is stored for each kind of request the driver can handle (for instance, open, close, 
read, write, device control, etc). On Windows this is called the “dispatch table”, while the Linux 
equivalent is called a “file operations structure” (or fops). 
After registering its functionality the driver waits until called upon by an application, and then 
performs whatever was requested of it. 
Drivers can implement functionality for all the major I/O request types. In this particular case 
however, only one is actually needed. The request type is called DeviceIOControl in Windows and 
ioctl in Linux. It sends an I/O control code and a data-pointer from an application to the device 
driver. The request function in the device driver then typically does a switch-case on the control 
code, and can, using the data-pointer for both input and output, perform a large range of various 
functions. 

4 FPGA Design 
For testing the drivers, the IOControlDemo FPGA design is used (see journal 2). This implements 
two 8 kB memory-type BAR modules. BAR0 is used to access the onboard leds and buttons, and 
provides four registers mapped as follows: 
 
- Register 0 (0x00): Retrieves and sets the state of the single user-led (bit 0) 
- Register 1 (0x04): Retrieves and sets the state of the eight leds (bit 7-0) 
- Register 6 (0x18): Retrieves the state of the DIP-switches (bit 3-0) 
- Register 9 (0x24): Retrieves the state of the user pushbuttons (bit 1-0) 
 
BAR1 just provides an 8 kB blockram with read and write access. 
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5 Windows driver 
The existing Windows driver from the demo comes with most of the functionality that is needed. It 
consists of a number of files, of which the most important are: 
 
- s3_1000.c: Includes the DriverEntry() function that is run at load, and the Control() function 

that handles DeviceIOControl requests. It is in this function that the new memory read and 
write functions will need to be added. 

- s3_1000.h: Describes special data structures used by the device driver.  
- pnp.c: Contains various functions that are used to initialize the board, and extract and setup its 

resources so they can be used by the driver. 
- ioctrl.h: This file holds the definition of the I/O control codes that can be used with 

DeviceIOControl. This file needs to be included by any application that wants to use 
DeviceIOControl requests with the device driver. Entries for the new memory read and write 
functions will need to be added in here. The unique GUID of the driver, which can later be used 
to identify it, is also specified. 

 
The driver is found in “Source\Windows_Device_Drivers_and_Applications\IOControl\Driver” on 
CD1. 

5.1 Adding new control codes 

Two new functions are needed, one that writes a single DWORD register, and one that reads a 
single DWORD register. First, control-codes for these are created in ioctrl.h. This is done using the 
following form: 
 
#define MDS_IOCTL_ Device_Function CTL_CODE(DeviceType, Function, Method, Access) 

 
The parameters in italics are: 
 
- Device_Function: The name of the control code, which should describe the functionality it is 

assigned to. The following will be used: READ_REGISTER and WRITE_REGISTER. 
- DeviceType: Describes the type of device. The Spartan3 board is initialized as a 

FILE_DEVICE_UNKNOWN, so this will also be used here. 
- Function: A unique integer index, used to distinguish different control codes from each other.  
- Method: Used to describe the method used for passing data between the application and the 

device driver. Here, buffered I/O will be used (data is copied between user-space and kernel-
space, as opposed to direct I/O where data is transferred directly between user-space memory 
and device memory – direct I/O can be faster for large transfers, but takes extra code to setup). 
This is indicated with METHOD_BUFFERED. 

- Access: Used to describe access-rights (read-only / write-only). There is no need to restrict this 
in any way for the test application, so FILE_ANY_ACCESS is used. 

 
A thorough specification on defining control codes can be found at MSDN1. 

                                                 
1 “Defining I/O Control Codes” at http://msdn2.microsoft.com/en-us/library/ms795909.aspx 
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Using these, the two lines that are added to ioctrl.h are: 
 
#define MDS_IOCTL_READ_REGISTER CTL_CODE( FILE_DEVI CE_UNKNOWN,  \ 
                  0x010,   \ 
                  METHOD_BUFFERED,  \ 
                  FILE_ANY_ACCESS) 
 
#define MDS_IOCTL_WRITE_REGISTER CTL_CODE( FILE_DEV ICE_UNKNOWN,  \ 
                  0x011,   \ 
                  METHOD_BUFFERED,  \ 
                  FILE_ANY_ACCESS) 

5.2 Adding new functions 

The new functions then need to be added in the Control() function in s3_1000.c. This function 
includes a switch-case statement, with a case for all the control codes in ioctrl.h. The new functions 
should simply be added as cases in this statement. The code used for the two functions is: 
 
case MDS_IOCTL_READ_REGISTER: 
 address = (ULONG) deviceExtension->MemoryStart[pBu ffer[0]] + (pBuffer[1]<<2); 
 length = 1; 
 KdPrint((“\nRead register at: %x\n”, address)); 
 pBuffer[0] = READ_REGISTER_ULONG((PULONG) address) ; 
 break; 

 
case MDS_IOCTL_WRITE_REGISTER: 
 address = (ULONG) deviceExtension->MemoryStart[pBu ffer[0]] + (pBuffer[1]<<2); 
 length = 0; 
 KdPrint((“\nWrite register at: %x\n”, address)); 
 WRITE_REGISTER_ULONG((PULONG) address, (ULONG) pBu ffer[2]); 
 break; 

 
In the above code, there a couple of important concepts: 
 
- pBuffer: A pointer to the I/O buffer of the device driver. Input from the calling application is 

received from here, and output is written to it also. The number of output bytes to write back to 
the stack is set using length. 

- deviceExtension->MemoryStart[<index>]: The base address of a specified BAR as seen by the 
kernel. To obtain the address of a specific register, the index of the BAR is passed through 
pBuffer[0], and the offset of the register is passed through pBuffer[1]. The offset is shifted left 
two places (as it is a DWORD offset) and added to the base address. 

- KdPrint: Prints a message that can be read with a kernel debugger. This is not necessary for the 
functionality, but nonetheless nice to have for debugging purposes. 

5.3 Assigning a GUID 

To make sure that the driver is only used with applications that are intended for it, a new globally 
unique identifier (GUID) should be assigned in ioctrl.h. The GUID can then be used by applications 
to obtain a handle to this particular driver. GUIDs can be created using the GUIDgen1 tool. 

5.4 Building and installing the driver 

To be able to build the driver, it is necessary to install the Windows Driver Kit (WDK). Once 
installed, it is possible to start various build environments, depending on the target platform of the 
driver (Start -> Programs -> Windows Driver Kits). Each platform has a ‘Checked’ and a ‘Free’ 
environment, corresponding to debug and release typically found in other build tools. A ‘checked’ 

                                                 
1 GUIDgen can be found in the Tools folder on CD1. 
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build will include all debug output and similar, while these will be stripped from ‘free’ builds, 
producing a smaller and faster driver. 
Here, the Windows XP x86 Checked build environment is used. The demo device driver comes 
with a usable make-file. The only thing that is apparently missing is the file afxres.h, which can be 
copied to the driver folder from the \inc\mfc42 folder in the WDK installation folder. 
As the sample driver comes with the necessary makefile, the build process can be started by simply 
issuing the command build in the driver folder from the build environment. The driver file is called 
s3_1000.sys, and is located in the subfolder \objchk_wxp_x86\i386. 
To install the driver, a driver installation information file (.inf) is needed. The demo application 
comes with a usable file (oemsetup.inf) that just needs to be placed in the same folder as the driver 
file. The driver can now be installed using the standard Windows driver installation features (Do not 
connect to Windows Update -> Install from a list or specific location -> Do not search for driver -> 
Have disk and then point at oemsetup.inf). For the project, new .inf files have been made for each 
driver (both for checked and free builds).  

5.5 Debugging 

Debugging kernel mode drivers is not an easy task, as an error more often than not will lead to a 
system crash. The best way is to use two systems, one for testing the driver, and another connected 
to the test system which runs the debugger. This is not always possible though, and usable results 
can also be obtained with only one machine. Microsoft has created a package called Debugging 
Tools for Windows1, which can be used both with one or two systems. The package includes the 
application WinDbg, which provides access to the kernel console. To use it locally, Windows needs 
to be booted with the /debug parameter, which should be added to the line that boots the used 
Windows installation in c:\boot.ini. An example boot.ini could be: 
 
[boot loader] 
timeout=30 
default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS  
[operating systems] 
multi(0)disk(0)rdisk(0)partition(1)\WINDOWS=”WinXP”  /fastdetect /debug 

 
After booting with this parameter, debugging is initiated by starting WinDbg and choosing File -> 
Kernel Debug -> Local. This will open the kernel console, which can be refreshed by using the 
command !dbgprint. As the debugger is run locally, many of the more advanced functions are not 
accessible, but just having access to the kernel console to read messages from the driver is still quite 
helpful. 

6 Windows Application 
To use the device driver, a console application will be built. The application and its sourcecode can 
be found in “Source\Windows_Device_Drivers_and_Applications\IOControl\Application” on CD1. 
The application will need to locate the device driver to use, open it, and be able to send requests to 
it. To accomplish this, the following functions are used: 
 
- SetupDiGetClassDevs(): This command is used to retrieve a handle to a device information 

structure, that holds information for a set of devices matching the parameters. Here, the 
ClassGuid parameter is used to identify the driver, using the same GUID as specified in 
s3_1000.h in the device driver.  
More info: http://msdn2.microsoft.com/en-us/library/ms792959.aspx. 

- SetupDiEnumDeviceInterfaces(): This is used to retrieve and identify a specific, indexed device 
interface in the aforementioned set. In this case, the first device in the set is retrieved.  
More info: http://msdn2.microsoft.com/en-us/library/ms791242.aspx. 

                                                 
1 The Debugging package can be found in the Tools folder on CD1. 
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- SetupDiGetDeviceInterfaceDetail(): Retrieves the details of the selected device interface. This 
is actually called twice. The first time to retrieve the size of the detail structure, so that a 
properly-sized buffer can be allocated. The second call then actually retrieves the details, and 
stores them in the allocated buffer.  
More info here: http://msdn2.microsoft.com/en-us/library/ms792901.aspx. 

- CreateFile(): This function creates a handle to and opens the device. The device to be used is 
determined from the device-name in the retrieved details-structure.  
More info: http://msdn2.microsoft.com/en-us/library/aa363858.aspx. 

- DeviceIoControl(): Sends a request to the device driver. The handle to the opened device, the 
control code of the desired function, and various pointers and variables concerning in- and 
output data are used as parameters.  
More info: http://msdn2.microsoft.com/en-us/library/aa363858.aspx. 

 
The application is now built using MingW, by choosing Execute -> Compile from within Dev C++. 
The ioctrl.h file from the driver is included to gain access to the used GUID and the defined 
control-codes. The application needs to be linked with the setupapi library, which is done by 
passing the flag -lsetupapi to the linker, and making sure that such a file is in the path. In Dev C++ 
this can be done by choosing Tools -> Compiler Options and adding –lsetupapi in the Add these 
commands to the linker command line box. 

7 Test of Windows device driver and application 
The functionality of the driver and application now needs to be tested. This is done with calls to 
DeviceIoControl() using the two new functions to read and write registers. It is chosen to write to 
register 1, which controls the led-bank, and to read register 9, which holds the state of the user 
pushbuttons. It is expected that the write will set the leds to a chosen pattern, and that the read will 
return 0, 1, 2 or 3, depending on whether the pushbuttons are activated or not (the pushbuttons are 
active-low). 
Running the application produces the expected results. Writing the pattern 0x55 (0b01010101) to 
the led-bank results in every other led being turned on, and the rest off. Reading correctly returns 
the value 3 when no buttons are pressed, 0 when both are, and 1 or 2 when only one of the buttons 
is pressed. 

8 Linux driver 
The Linux device driver needs to be written from scratch. This is done in accordance with the book 
Linux Device Drivers1 (LDD). The Linux driver will be quite a bit simpler than the Windows driver, 
as it will only include what is absolutely necessary to initialize the card and read and write registers 
(as opposed to the Windows driver, which is able to handle numerous additional events such as 
card-removal and similar).  
The driver will be created as a module, and will need three functions, one to handle initialization, 
one to handle cleanup, and one to handle requests. These functions will be put in the file s3pcie.c. 
Additionally, two control-codes need to be defined, which will be done in s3pcie.h. 
The driver is found in “Source\Linux_Device_Drivers_and_Applications\IOControl\Driver” on 
CD1. 

                                                 
1 See the literature list. The book can be freely distributed, and is included in the folder ”Linux Device Drivers, Third 
Edition” on CD1. 
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8.1 Defining control codes 

Two control codes need to be defined, one for read and for write. Linux control codes are defined 
using one of the following forms: 
 
#define CODE_NAME _IO( type, number)     //No parameters/return values 
#define CODE_NAME _IOR( type, number, size)  //Reads data from driver 
#define CODE_NAME _IOW( type, number, size)  //Writes data to driver 
#define CODE_NAME _IOWR( type, number, size) //Bidirectional transfer 
 

Type is an 8 bit long so-called “magic” number, which is preferably a unique number assigned to 
only this device driver. The magic number does not *need* to be unique, but by using different 
numbers for all device drivers, the risk is lowered that a request by accident is sent to and handled 
by another driver than the intended receiver. A list of existing and already assigned magic numbers 
can be found in the file ioctl-number.txt in the documentation folder of the Linux installation. 
Looking through this list, the magic number 0xA5 is chosen. 
Number is an index of the control code, and can just be sequential numbers. 
The size field can be used when a single value needs to be passed between application and driver. 
This field is not mandatory, but can ease the validity-checking of passed arguments as the control 
code will then include information about the desired size of the argument. If structures or arrays are 
required, the field can be ignored. 
Using this, the control codes in s3pcie.h are defined as: 
 
#define S3PCIE_IOC_MAGIC   0xA5 
 
#define S3PCIE_IOREAD_DWORD  _IOWR(S3PCIE_IOC_MAGIC , 1, int) 
#define S3PCIE_IOWRITE_DWORD  _IOW(S3PCIE_IOC_MAGIC , 2, int) 
 
#define S3PCIE_IOC_MAXNR   2 

 
Notice that the read control code is defined as _IOWR, as the address is passed from the application 
to the driver, and the data read is then passed back. The size field is not used, as pointers will be 
transferred between application and driver. The last define is used in the driver for a quick check to 
see if a received control code is valid. 

8.2 Includes and defines 

The driver needs to include a number of header files: 
 
- <linux/init.h>:  Provides functionality for specifying which functions to use for initialization 

and cleanup. 
- <linux/module.h>: Contains various useful definitions and symbols. 
- <linux/pci.h>: Provides functionality for accessing PCI (and PCI Express) devices. 
- <linux/cdev.h>: Contains functions used for registering functionality with the kernel. 
- <asm/uaccess.h>: Contains functions used for checking the validity of memory locations 

passed from user-space. 
- “s3pcie.h”: Contains a specification of the control codes used. 
 
The Linux kernel keeps track of the license under which various modules are distributed. Using a 
proprietary module will set a “tainted” flag in the kernel. The kernel will continue to work just fine, 
but in some cases Linux developers will be less likely to help users with tainted kernels, as it is not 
possible to look through and debug the source code of all the loaded modules. 
To set the license for a module, the following macro is used: 
 
MODULE_LICENSE(“GPL”); 
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As the driver is not going to be distributed in its current state, the choice of license does not matter 
much. In this case the GPL license is used for the sake of simplicity. 
The next thing to do is to define the devices that this driver will work with in a device table. This is 
done using the Vendor and Device ids as specified in journal 2: 
 
#define VENDOR 0x1597 
#define DEVICE_ID 0x0301 
 
static const struct pci_device_id s3pcie_ids[] = 
{ 
 {PCI_DEVICE(VENDOR, DEVICE_ID)}, 
 {0,}, 
}; 

 
As with the Windows driver, information about which functions to call for various requests is 
needed. This is specified in a file operations structure. As only ioctl requests will be used, the 
following is enough: 
 
static int s3pcie_ioctl( struct inode* inode,  
           struct file *filp,  
           unsigned int cmd,  
           unsigned long arg); 
 
static struct file_operations s3pcie_fops = 
{ 
 .owner = THIS_MODULE, 
 .ioctl = s3pcie_ioctl, 
}; 

 
Additionally, variables for storing the handle to the opened device, addresses of the BARs, the used 
device number, and a kernel structure representing the device need to be declared: 
 
static struct pci_dev *dev; 
static void* bar_addr[6]; 
static dev_t first; 
static struct cdev* s3pcie_cdev; 

 
The last thing to do is to tell the driver about the initialization and cleanup functions, s3pcie_init() 
and s3pcie_exit(). This is done with the following two lines, placed at the end of the file: 
 
module_init(s3pcie_init); 
module_exit(s3pcie_exit); 

8.3 The initialization function 

The function to use for initializing the board when the driver module is loaded is s3pcie_init(). It is 
declared using: 
 
static int __init s3pcie_init(void) 
 

The __init statement tells the kernel that the function is only used during initialization and can thus 
be removed to conserve memory once it has completed. The first thing to do in this function is to 
tell the kernel about the device table defined for this driver: 
 
MODULE_DEVICE_TABLE(pci, s3pcie_ids); 
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In Linux, devices are assigned major and minor device numbers. These need to be requested, which 
is done with the following function: 
 
alloc_chrdev_region(&first, 0, 1, “s3pcie”); 

 
The first allocated device number is returned in the first structure, the first minor number is 
requested to be 0, only 1 number is needed, and the device should be called s3pcie. With this done, 
the appropriate device needs to be found and initialized: 
 
dev = pci_get_device(VENDOR, DEVICE_ID, NULL); 
 
if(dev) 
{ 
 int err; 
 err = pci_enable_device(dev); 
  
 if(!err) 
 { 
  int n; 
 
  for(int n=0; n<6; n++) 
  { 
   bar_addr[n]= ioremap(pci_resource_start(dev,0), pci_resource_len(dev,0)); 
  } 
 
  s3pcie_cdev = cdev_alloc(); 
  cdev_init(s3pcie_cdev, &s3pcie_fops); 
  s3pcie_cdev->owner = THIS_MODULE; 
 
  cdev_add(s3pcie_cdev, first, 1); 
 } 
} 

 
The first call retrieves the first device that matches the specified VENDOR and DEVICE_ID (in this 
case there is no reason to support more than one card). If a device was found (dev differs from 0), 
the device is enabled. If everything goes well, the BARs are mapped to kernel memory, and their 
new addresses are stored in the proper variables. The last four lines allocate and set up a cdev-
structure, which registers the drivers functionality with the kernel (notice that the s3pcie_fops 
structure is passed along). After the last call, the driver is “live” and can be called by applications. 

8.4 The ioctl function 

The ioctl function is called whenever an ioctl request is received by the driver. Recall that the 
function is declared like this: 
 
static int s3pcie_ioctl( struct inode* inode,  
           struct file *filp,  
           unsigned int cmd,  
           unsigned long arg); 
 

The inode and filp parameters correspond to the file descriptor opened by the user-space 
application. The cmd parameter holds the index of the control code (number) for the request, and 
the (optional) arg parameter can be whatever the user mode application wants to pass to the driver 
(here it is a pointer to a memory array). 
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The first thing to do is to check if the control code is valid for this driver: 
 
if(_IOC_TYPE(cmd) != S3PCIE_IOC_MAGIC) return –ENOT TY; 
if(_IOC_NR(cmd) > S3PCIE_IOC_MAXNR) return –ENOTTY;  

 
This checks both if the “magic” number matches that of the driver, and also if the command number 
is defined. After having validated the command, the actual functionality of the ioctl function 
follows: 
 
switch(cmd) 
{ 
case S3PCIE_IOREAD_DWORD: 
 get_user(stack[0], (int __user *)arg); 
 get_user(stack[1], (int __user *)(arg+sizeof(int)) ); 
 stack[2] = ioread32(bar_addr[stack[0]] + (stack[1] <<2)); 
 put_user(stack[2], (int __user *)arg); 
 break; 
case S3PCIE_IOWRITE_DWORD: 
 get_user(stack[0], (int __user *)arg); 
 get_user(stack[1], (int __user *)(arg+sizeof(int)) ); 
 get_user(stack[2], (int __user *)(arg+2*sizeof(int ))); 
 iowrite32(stack[2], bar_addr[stack[0]] + (stack[1] <<2)); 
 break; 
default: 
 return –ENOTTY; 
} 

 
For both cases the index of the target BAR is passed as the first element in the arg buffer, and the 
address as the second element. For S3PCIE_IOWRITE_DWORD, the data to write is passed as the 
third element. The get_user() and put_user() functions are used to move data between user-space 
and kernel-space. The ioread32() and iowrite32() are very similar to the commands used in the 
Windows driver, and simply read or write a 32 bit register. 

8.5 The cleanup function 

When the driver is unloaded a few things need to be cleaned up, which is done in s3pcie_exit(): 
 
cdev_del(s3pcie_cdev); 
pci_disable_device(dev); 
pci_dev_put(dev); 
unregister_chrdev_region(first, 1); 
 

First, the functionality of the driver is unregistered from the kernel, to keep applications from 
calling it. Next, the PCI device is disabled, and the kernel is told that the device is no longer in use. 
Finally, the assigned device numbers are unregistered. 

8.6 Building the driver 

To build the driver, a full kernel source tree and a makefile is needed. The source tree is installed as 
a part of the full Slackware 12 installation, and in the case of building this module, a very simple 
makefile is enough: 
 
obj-m := s3pcie.o 

 
This needs to be invoked from the root of the kernel source folder (/usr/src/linux), which can be 
done like this: 
 
make –C /usr/src/linux M=`pwd` 
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As this gets a little tedious to write every time the driver needs to be rebuilt, a makefile that handles 
this is used instead1: 
 
# If KERNELRELEASE is defined, we've been invoked f rom the 
# kernel build system and can use its language. 
ifneq ($(KERNELRELEASE),) 
 obj-m := s3pcie.o 
 
# Otherwise we were called directly from the comman d 
# line; invoke the kernel build system. 
else 
 KERNELDIR ?= /lib/modules/$(shell uname -r)/build 
 PWD := $(shell pwd) 
default: 
 $(MAKE) -C $(KERNELDIR) M=$(PWD) modules 
endif 

 
Using this makefile, it is enough to simply run make to build the driver. 

8.7 Loading the driver 

To load the driver, the insmod command is used. However, for applications to be able to access the 
functionality, a device node in the /dev/ folder needs to be created also. This device is created using 
the following command: 
 
mknod /dev/ Node_name c Major Minor 

 
Node_name is the name of the node, c specifies a character device, and Major and Minor is the 
device number assigned to the device driver by the kernel, when the driver is loaded. The Minor 
number is just set to 0 (as done in the driver), but as the Major number is assigned dynamically, it 
needs to be retrieved from /proc/devices where all active devices in the system are listed. This is 
done using the awk command to search for the name of the module, and then return the number 
listed next to it. 
All this can be combined into a single script (load) that loads the driver, and creates a corresponding 
device node2: 
 
#!/bin/sh 
module=”s3pcie” 
device=”s3pcie” 
 
/sbin/insmod ./$module.ko $* || exit 1 
 
rm –f /dev/$device 
 
major=$(awk “\$2==\”$module\” {print \$1}” /proc/de vices) 
 
mknod /dev/$device c $major 0 

 
The rm command is used to remove old nodes (should there be any) before creating the new one.  

                                                 
1 The make file is adapted from LDD, chapter 2, page 24. 
2 The load and unload scripts are adapted from LDD, chapter 3, page 47.    
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A similar script (unload) is used for unloading the module: 
 
#!/bin/sh 
module=”s3pcie” 
device=”s3pcie” 
 
/sbin/rmmod ./$module.ko $* || exit 1 
 
rm –f /dev/$device 

 
After running the load script, the device and driver are ready for use. 

8.8 Debugging 

The easiest way of debugging drivers in Linux is to use the printk() function to print a message to 
the system log. This can then be read directly from the Linux console using the dmesg console call. 

9 Linux application 
The application is very simple, as the device is opened with a single call to open: 
 
int dev; 
dev = open(“/dev/s3pcie”, NULL); 

 
The string passed to open is simply the name of the device node, created by the load script. To 
communicate with the driver, the ioctl() command is used, which has the following syntax from 
user mode applications: 
 
ioctl(int fd, unsigned long cmd, ...); 
 

The fd argument is the handle returned by open, the cmd argument is the control code (as specified 
in s3pcie.h), and any additional arguments can then be passed also. In this case, this will be a 
pointer to an integer. 
The application is build using GCC, with the following command: 
 
g++ iocontrol.cpp 

10 Test of Linux device driver and application 
To test the functionality of the device driver and application, it is attempted to write the led bank 
and read the pushbuttons on the Spartan3 board. This is done by first writing an 8 bit pattern (0x55 
is chosen, as it should produce alternating on and off leds) to register 1, and then reading register 9 
and printing the value to the console. 
The test is successful, as the correct pattern is seen on the leds, and as the result of reading the state 
of the pushbuttons is correctly 3 when no buttons are pressed, 0 when both are pressed, and either 1 
or 2 when only one button is pressed. 

11 Conclusion 
Drivers and simple applications for both Windows XP and Linux 2.6 have now been created. The 
functionality is similar on both platforms. Each provides a way of writing or reading a single 
DWORD register on the board. This can be done from a user mode application through very similar 
calls, DeviceIoControl() on Windows, and ioctl() on Linux.  
This has been tested, and the functionality works on both platforms. 


