Introduction to the PCI Express interface Page 1 of 7

Introduction to the PCI Express interface

The PCI Express interface is a third-generatiogh+speed interconnect for use in computer
systems. It is supposed to take over from curreobrsd-generation interfaces like PCI, PCI-X and
AGP.

This document is based on the bd®RI Express System Architectti®CleSA), and will provide
an introduction to key features and concepts oPtGéExpress interface, mainly by comparing it to
the older PCl interface.

1 PCI Express vs. PCI

One of the main differences between PCIl Expressi@ngredecessor PCI lies in the physical
design. The PCI interface is a parallel bus runrabh@3 or 66 MHz, with support for attaching
several PCI devices to the same bus. The pardtiettare and the support for several devices
(hence the term bus), makes it hard to raise thek@dpeed above what is currently used while still
maintaining signal integrity.

PCIl Express however, uses point-to-point links, stcstmg of one or more serial differential
signaling lanes each capable of transferring 2.6 GBlthough often being referred to as a bus, it
actually is not. PCI Express devices do not shiguks lor lanes - connecting several devices is
supported through the use of so-called PCI Exgegsgches” in the motherboard chipset instead.)
The distinction between lanes and links is impdrtariane is a pair of differential signal-pairsiéo
pair running in each direction, so a total of 4nsilg per lane), while a link is the actual inteefac
which can consist of one or more lanes. A link frarexample be designated as a PCI Express x16
interface, indicating that it uses 16 lanes.

An example PCl-based platform can be seen in figurgand an example PCI Express platform in
figure 1.b.

| Processor |
Processor

Morth

e [

Eridge
| 440}

PCI-33MHz

Siots

aeTaa

IDE
0]
UsE South Bridge &
1SA
i
Boot Modem Audio [_—'*-]— Super _[.'f_{
ROM Chip Chip o | 10 ="
[| b =
:| e *é COM1 | IFCI Express PCI Express
comz Link A

Figure 1.a (left): An example of a 33 MHz PCI bus based platform (Figure 1-2 from PCleSA).
Figure 1.b (right): An example of a PCI Express system (Figure 1-23 from PCleSA).

Another difference is in the way PCIl Express usepaaket-based protocol instead of the

address/data-bus used in PCIl. PCI Express alsoimd®sd signaling through the packet-based
protocol for sending signals (interrupts, power agament, etc), where the PCI interface uses
dedicated pins. The clock signal is incorporatetb ithe serial data stream by using 8b/10b
encoding to guarantee either a 0-to-1 or a 1-t@@sition every 10 bits. A PLL in either end of the

transmission line can then recover the clock si¢noah these transitions.

There are however, also similarities between PQiréss and PCI. The most notable being that PCI
Express implements the same usage and load-stom@waoication models as PCI, which results in

! See the literature list for further information.

Written by Simon Falsig, SDU, FORK-project autumn 2007

Introduction to the PCI Express interface Page 2 of 7

PCI Express being software backwards compatible R€1. PCI device drivers for the host OS
will not need to be changed to work with a simP&1 Express device.

2 Performance

The current standard, PCI Express v1.1, has a memitnansfer speed of 2.5 Gb/s for each lane.
With the 8b/10b encoding, this results in a maxinpenformance of 250 MB/s in each direction,
per lane (10 bits are used to transmit 1 byte)cdmparison, a standard 33 MHz, 32 bit PCI
interface has a maximum performance of 133 MB/sis(ia bus, so this is the total for both
directions).

As PCI Express links can consist of up to 32 lanas;h higher speeds are achievable. The packets
are byte-striped across available lanes, so thedspeales linearly with the number of lanes (from
the 250 MB/s/direction for a 1x link to 4 GB/s/diton for a 16x link, like those commonly used
for graphic cards).

3 The configuration registers

PCIl and PCI Express devices have a number of amafign registers which store important
information specific to the devices. This includ®svice/Vendor IDs, class codes that specify what
the device does (graphics card/network interfacd/etc), and information about the Base Address
Registers (BARS), see figure 3.a.

froubiyword
Bk

E‘_.FIE [en alacimall

Gkatun Comenand
Hegaier | Rinfy b

Chann Coda

Basa Address 0

Basa Address 1) L]
Basa Address 2 : 0
Base Address 3 | 4
Bans Address 4 ;"H‘

i}

Bose Address §

| CardBus CI15 Polnfar

Subsystem 0| Subsystem

Wondar iD

| Expansion ROM | 12
| Baze Address i
Empasaney | 13
Rosarvad r: gl

Resgrdod e

vl

T f] T
| | Inberrupd thisdripg| | ¢
Muas LIIIIHF' Em! Pan | | Lime L)

|
L

. Required configuration reglsiers

Figure 3.a: The PCI/PCI Express configuration header (Adapted from figure 1-13 in PCleSA).

In addition to this configuration header, 192 bydéslevice specific configuration registers areals
available, providing in total 256 bytes of configtion space. PCI Express devices also have an
additional 3840 bytes of extended configurationcepavailable, which can be used for extended
capabilities such as advanced error reporting amepbudgeting.

The BARs are the primary means of communicatiomfeohost system to a PCI Express device.
These can be of type 1/0 or memory. Memory BAR®offetter performance than 1/0O BARSs, as

Written by Simon Falsig, SDU, FORK-project autumn 2007

Introduction to the PCI Express interface Page 3 of 7

they can be prefetched, and allow posted writes ¢&etion 5). Two memory BARs can also be
combined into one 64 bit BAR, providing up to 8 leyi®s of memoryspace. The use of 1/0O-type
BARs is discouraged by for instance Micro$péts the amount of I/O space available (64 kB) on
x86 systems is very scarce compared to the amdumémory space (4 GB).

4 PCI Express layered protocol

PCI Express uses a three-layered protocol. Thedaye the transaction layer, the data link layer,
and the physical layer. See figure 4.a.

[nbaund To Recever Core; : i Dulbound From Transmitier Cors:

Data AW Regussls Device A Davice B Requests to wiiziread cala

Completions . Comipletions

Inbound messages, Elc. Device | Device Dulbound messages, Etc.
e = Core

Transaction |
Layer

$iny

Figure 4.a: Two PCI Express devices, each with the three-layered protocol (Adapted from figure 4-2 in
PCleSA).

The layers have the following purposes:

- Transaction layer, handles TLP’s (Transaction Lalackets)The transaction layer accepts,
buffers and disseminates TLP’s from and to theakegore. It creates a header containing
information about the command to be performed, eslrs, and various control flags. This
layer also takes care of ordering and certain prtise flow control.

- Data link layer, handles DLLP’s (Data Link Layer ¢k&ts):The data link layer provides a
reliable method for transferring TLP’s between wavices, and handles initialization, flow
control, error detection and recovery. The datia lltyer adds a CRC value and a sequence
number to the TLP.

- Physical layer:The physical layer converts the DLLP’s to an appede format, for
transmission over the PCI Express interface. Genaplementations (like the Spartan3 PCI
Express Starter kit) have the physical layer splitvo, connected with a PXPIPE interface.
Here a separate PHY chip converts the serial 2/5 &t/10b encoded stream to for instance an
8 bit 250 MBY/s parallel stream. This way only thé¥Pchip needs to be able to handle the very
high frequencies (GHz range) experienced on theE@itess interface, while the rest of the
physical layer implementation can run at a few maddviHz.

5 PCI Express transaction model

There are basically four different types of tranges available in a PCI Express system: Memory,
I/O, configuration and message transactions (ab¢h except for message transactions, are also
available in PCI systems). These can be dividea Mdn-posted or posted transactions. Non-posted

! See the file MisclO Resource usage reduction.pdfi CD1

Written by Simon Falsig, SDU, FORK-project autumn 2007

Introduction to the PCI Express interface Page 4 of 7

transactions use a split transaction protocol witkequester and a completer. The requester sends a
request packet (for example a memory read requeesd)the completer responds with a completion
packet containing the requested data. Posted tamss: consist only of a request (for example a
memory write), without a response.

The split transaction protocol also allows for geldh responses. Using a PCl interface, if a dewce i
too busy to handle a request at the time it isivede the request will have to be resent laterchi
can be rather ineffective. However, using the gmihsaction protocol, requests can be memorized
and stored until they can be processed. After vetgia request that can not be serviced
immediately, a split response is sent to the regueshe requester can then go back to working on
other tasks, until the completer is able to protlkssstored request, and responds with a completion
packet.

Requesters are able to handle several outstandmgest packets by using a tag on each request
packet. The requester/completer model can be seéguwe 5.a.

2. Completer unable to
return data immediately
3, Completer memorizes
transaction

4, Coiripiter BN ™ .

split response

1. Requester iniliates
read transaclio

5. Completer initiates split completion
bus cycle to return read data

Figure 5.a: An example showing the requester/completer structure of a PCI Express system (Figure 1-18
from PCleSA).

A complete list of the different packet types ie fACl Express protocol can be seen in table 5.b.

TLP Packet Types Abbreviated Name
Requests
Memory Read Request (Non-posted) MRd
Memory Read Request - Locked access (Non-posted) MRdLk
Memory Write Request (Posted) MWr
10 Read (Non-posted) IORd
10 Write (Non-posted) 10Wr

Configuration Read (Type 0 and Type 1) (Non-posted)

CfgRdo0, CfgRd1

Configuration Write (Type 0 and Type 1) (Non-posted)

Cfgwr0, CfgWrl

Message Request without Data (Posted) Msg
Message Request with Data (Posted) MsgD
Responses

Completion without Data Cpl
Completion with Data CplD
Completion without Data - associated with Locked Memory Read Requests CplLk
Completion with Data - associated with Locked Memory Read Requests CpIDLk

Table 5.b: The different packet types in a PCl Express system (Adapted from table 4-2 in PCleSA).

Sending a locked memory read request causes thefqoah requester to completer to become
locked, until an unlock message is sent. Only @& complex is allowed to initiate a locked request.

Written by Simon Falsig, SDU, FORK-project autumn 2007

Introduction to the PCI Express interface Page 5 of 7

6 PCl Express Transaction Layer packets

The TLP packets of most interest are the 3DW menreguests (read or write), and their
completions. These are used for reading and wrdpit memory BARs, and for certain, simple
systems, these are all that are needed to comnerbedween a PCl Express device and a host
system. The headers for these TLPs can be segurme 6.a and 6.c.

A0W Mermiony Request Headsr
+{ +1 +2 +3
718l sl alzlzl ol ol 7l el skl 2l 2] 1lu|?i54 slalzlzl 1|-:|I:'|s| slalalalilo

AR mpe RTc R TEAW R Lengh

LRV 18ty
Byte 4 Riquester 1D Tag “’é‘s s =3EN
Byle 8 Address [31:2] R
Figure 6.a: Headers for 3DW memory request (Adapted from figure 4-8 in PCleSA).

The contents of the various fields can be seeahlet6.b.

Field Name Byte/Bit Function

Length [9:0] Byte 3 Bit 7:0 TLP data payload transfer size, in DW. Maximum transfer size is 10 bits, 2'° = 1024 DW (4KB).
Byte 2 Bit 1:0 Encoding:

00 0000 0001b = 1DW, 00 0000 0010b = 2DW, (...), 11 1111 1111b = 1023DW, 00 0000 0000b =
1024DW

Attr (Attributes) Byte 2 Bit 5:4 Bit 5 = Relaxed ordering:
When set = 1, PCI-X relaxed ordering is enabled for this TLP. If set = 0, then strict PCI
ordering is used.

Bit 4 = No Snoop:
When set = 1, requester is indicating that no host cache coherency issues exist with
respect to this TLP. System hardware is not required to cause processor cache snoop for
coherency. When set = 0, PCI -type cache snoop protection is required.

EP (Poisoned Data) | Byte 2 Bit 6 If set = 1, the data accompanying this data should be considered invalid although the transaction is
being allowed to complete normally.

TD (TLP Digest Field | Byte 2 Bit 7 If set = 1, the optional 1 DW TLP Digest field is included with this TLP.
Present)

TC (Traffic Class) Byte 1 Bit 6:4 These three bits are used to encode the traffic class to be applied to this TLP and to the completion
associated with it (if any).

000b = Traffic Class 0 (Default), (...), 111b = Traffic Class 7

TC 0 is the default class, and TC 1-7 are used in providing differentiated services.

Type[4:0] Byte 0 Bit 4:0 TLP packet Type field:

00000b = Memory Read or Write, 00001b = Memory Read Locked

Type field is used with Fmt [1:0] field to specify transaction type, header size, and whether data
payload is present.

Fmt 1:0 (Format) Byte 0 Bit 6:5 Packet Format:
00b = Memory Read (3DW w/o data), 10b = Memory Write (3DW w/ data)
1st DW BE 3:0 Byte 7 Bit 3:0 These high true bits map one-to-one to qualify bytes within the DW payload.
Last DW BE 3:0 Byte 7 Bit 7:4 These high true bits map one-to-one to qualify bytes within the last DW transferred.
Tag 7:0 Byte 6 Bit 7:0 These bits are used to identify each outstanding request issued by the requester. As non-posted

requests are sent, the next sequential tag is assigned.
Default: only bits 4:0 are used (32 outstanding transactions at a time)
If Extended Tag bit in PCI Express Control Register is set = 1, then all 8 bits may be used (256 tags).

Requester ID 15:0 Byte 5 Bit 7:0 Identifies the requester so a completion may be returned, etc.
Byte 4 Bit 7:0 Byte 4, 7:0 = Bus Number

Byte 5, 7:3 = Device Number

Byte 5, 2:0 = Function Number

Address 31:2 Byte 11 Bit 7:2 | The start address for the memory transfer. Note that the lower two bits of the 32 bit address are
Byte 10 Bit 7:0 | reserved (00b), forcing the start address to be DW aligned.
Byte 9 Bit 7:0
Byte 8 Bit 7:0
Table 6.b: Description of the various fields in a 3DW memory request header (Adapted from table 4-7 in
PCleSA).

Written by Simon Falsig, SDU, FORK-project autumn 2007

Introduction to the PCI Express interface

Page 6 of 7

Byte 0
Byte 4
Byte 8

718l 5lalalal 1lol 7l el sl4) al 2l 1] ol 7l6l 5l al 3l 2] 11 ol 7l 8] sl al 3l 2] 4] @
REM Tpe R TC R

Completion TLP

+0 +1 +2 +3

HE
Dp.ﬁ.itr R

o B
Sianis & Byte Count

Tag

Length
Completer ID

R Lower Address

Requester ID

Figure 6.c: Headers for 3DW memory completion (Adapted from figure 4-10 in PCleSA).

The contents of the various fields can be seeablet6.d.

Field Name Byte/Bit Function
Length 9:0 Byte 3 Bit 7:0 Indicates data payload size in DW. For completions, this field reflects the size of the data payload
Byte 2 Bit 1:0 associated with this completion.
Attr 1:0 Byte 2 Bit 5:4 Attribute 1: Relaxed Ordering Bit
(Attributes) Attribute 0: No Snoop Bit
For a completion, both of these bits are set to same state as in the request.
EP Byte 2 Bit 6 If = 1, indicates the data payload is poisoned.
TD Byte 2 Bit 7 If = 1, indicates the presence of a digest field (1 DW) at the end of the TLP (preceding LCRC and END)
TC 2:0 (Transfer Byte 2 Bit 6:4 Indicates transfer class for the packet. For a completion, TC is set to same value as in the request.
Class)
Type 4.0 Byte 0 Bit 4:0 TLP packet type field. Always set to 01010b for a completion.
Fmt 1:0 (Format) | Byte O Bit 6:5 Packet Format. Always a 3DW header
00b = Completion without data (Cpl), 10b = Completion with data (CpID)
Byte Count Byte 7 Bit 7:0 This is the remaining byte count until a read request is satisfied. Generally, it is derived from the original
Byte 6 Bit 3:0 request Length field.
BCM Byte 6 Bit 4 Set = 1 only by PCI-X completers. Indicates that the byte count field (see previous field) reflects the first
(Byte Count transfer payload rather than total payload remaining.
Modified)
CS 2:0 Byte 6 Bit 7:5 These bits encoded by the completer to indicate success in fulfilling the request.
(Completion 000b = Successful Completion (SC), 001b = Unsupported Request (UR)
Status Code) 010b = Config Req Retry Status (CR S), 100b = Completer abort. (CA)
others: reserved
Completer ID 15:0 | Byte 5 Bit 7:0 Identifies the completer. While not needed for routing a completion, this information may be useful if
Byte 4 Bit 7:0 debugging bus traffic.
Byte 4 7:0 = Completer Bus #
Byte 5 7:3 = Completer Dev #
Byte 5 2:0 = Completer Function #
Lower Address 6:0 | Byte 11 Bit 6:0 | The lower 7 bits of address for the first enabled byte of data returned with a read. Calculated from
request Length and Byte enables, it is used to determine next legal Read Completion Boundary
Tag 7:0 Byte 10 Bit 7:0 | These bits are set to reflect the Tag received with the request. The requester uses them to associate
inbound completion with an outstanding request.
Requester ID 15:0 | Byte 9 Bit 7:0 Copied from the request into this field to be used in routing the completion back to the original requester.
Byte 8 Bit 7:0 Byte 4, 7:0 = Requester Bus #

Byte 5, 7:3 = Requester Device #
Byte 5, 2:0 = Requester Function #

Table 6.d: Description of the various fields in a completion header (Adapted from table 4-9 in PCleSA).

Written by Simon Falsig, SDU, FORK-project autumn 2007

Introduction to the PCI Express interface Page 7 of 7

7 Communicating with a PCI Express device

When the host system installs and configures its BX@ress devices during startup, it reads the
configuration headers, and typically maps the BARs a virtual memory space. They can then be
accessed through standard memory read and writgidus from device drivers, or be mapped
further on to the address space of a user-modéapph.

On Windows systems, BARs can be accessed from @levigers by using kernel mode calls such
as READ_REGISTER_<datatypegwhere <datatype> is the type of data to read,irigtance
“ULONG” for a 32 bit value). The device driver cmen be queried from user-mode applications
using theDeviceloControl()function. This can be seen in figure 7.a.

READ_REGISTER_*/
WRITE_REGISTER_* DeviceloControl()

PCI Express device [« Windows kernel-mode < Windows user-mode
device driver application

A 4
A 4

<data> <data>

Figure 7.a: An example communication with a PCI Express device on a Windows system.

On Linux, communication happens almost the same juay using different system calls. Between
the device driver and the deviceread<size>and iowrite<size> are used (where <size> is the
amount of bits to read, 8, 16 or 32). Between fh@ieation and the device driver, the dalttl() is
used.

8 Summary

To sum up:

- PCI Express uses serial point-to-point communicatipposed to PCls parallel bus structure

- PCIl Express uses packet-based communication wignals such as interrupt, power
management and similar inband, while PCI uses anead/data-bus and dedicated pins for
most signals

- PCI Express and PCI use the same configuratioresgrad communication model as far as the
host system is concerned. PCI Express is thersfufterare backwards compatible with PCI.

- For a PCI Express 1x link, the maximum theoreti@idwidth is 250 MB/s/direction.

- For communication, PCI Express devices use basessldegisters that are mapped into the
virtual memory space of the host system.

Written by Simon Falsig, SDU, FORK-project autumn 2007

