Journal 2, Creation of FPGA designs Page 1 of 7

Journal 2, Creation of FPGA designs

1 Objectives

The main objective is to create an FPGA design shguports the PCI Express interface, and
features a usable, generic interface for connedchisgto other hardware modules inside the FPGA.
The design should also be created with the regenesnregarding transfer speed and storage
possibilities specified in journal 1 in mind.

Additionally, it could be interesting to demonstratome of the possibilities of the Spartan3 PCI
Express Starter kit, such as usage of the onboBi RAM memory and the VGA output port.

2 Problem analysis

The Spartan3 PCI Express Starter kit includes @@ointrol sample demo desfgiThis is based on
the LogiCore Endpoint PIPE for PCl Express IPcaaad includes an implementation of a
programmable input/output system (PIO), and sometionality for accessing the leds and buttons
on the board through BARO. It is written in Verilobhe demo is made for Xilinx 8.1 though, and
uses version 1.3.2 of the PIPE IPcore. Therefors itot directly usable with Xilinx 9.2 which
comes with version 1.7 of the PIPE IPcore. It stdog possible to reuse the functionality for
accessing the leds and buttons though.

The obtainable transfer speeds depend heavily ®rdist system, so the evaluation of these will
need to wait until some drivers have been created.

Another requirement is the possibility to store B of data on the board. The easiest way to
store data in a Spartan3 FPGA is usually to usertegrated blockram. However, as the used
FPGA only has 54 kB available, the onboard 128 MEDBR SDRAM could be a possibility
instead.

So the following needs to be done:

- A new design and structure based on version 1tiieoPIPE IPcore needs to be created.

- A BAR interface has to be specified and implemented

- Afew demo designs, exploring the possibilitieshaf board, including the DDR SDRAM,
need to be created.

3 The PIPE core

Xilinx provides the Endpoint PIPE for PCI ExpreBedre, which implements all three layers of the
PCI Express protocol (physical, datalink and trahea). The core exposes a PXPIPE interface to
an external physical layer chip mounted on the t8p&r board, and transaction (trn) and
configuration (cfg) interfaces to modules in the@A2 The trn interface is used for communicating
with the host system over the PCI Express interfacel accepts and delivers TLPs. The cfg
interface provides access to the configurationspéthe PIPE core.

The core has been tested and verified by Xilingdmply with the PCI Express v1.1 standard, and
thus developers can concentrate on designing thealatunctionality of the device, without
worrying too much about the PCI Express interface.

To use the core, a license is needed. For thiegrap “Full System Hardware Evaluation” license
is used, which will work for 8 hours after loaditige design into the FPGA

3.1 Generating the PIPE core

The described PIPE core can be generated direotly Xilinx ISE, by adding a new IP source and
selecting theEndpoint PIPE for PCl Express 1.7 core (underSandard Bus Interfaces -> PCI
Express). CoreGen will then popup a menu through which the PIPE cmae be configured. The

! This can be found in théldols\Spartan3 PCI Express Sarter kit Demo” folder on CD1.
2 More info: http://www.xilinx.com/ipcenter/ipevaltian/pcie_pipe_evaluation.htm

Simon Falsig, SDU, FORK-project autumn 2007



Journal 2, Creation of FPGA designs Page 2 of 7

most important parameters here are the vendor aewigeal IDs (page 2), as these are used by the
host system to match the device to the correctcdedtiver, and the BAR setup (page 3 and 4). The
following is used throughout the project for IDslarlass codes:

- Vendor ID / Subsystem Vendor ID: 1597

- Device ID / Subsystem ID: 0301

- Revision ID: 00

- Base class: 0B (Processors)

- Sub-Class: 40 (Co-processors)
- Interface: 00

- Cardbus CIS Pointer: 00000000

The class codésan be set to more appropriate values if desiratithe ones listed work just fine.
The configuration of the BAR registers varies wittie application. Other more advanced

parameters, like power saving, can be configured bait here they are just kept at their default
values.

4 The overall structure

When generating the PIPE core wilbreGen, a sample design, including a programmed 1/0O (PIO)
module, is automatically generated also. The PlOntelule hooks up to the trn interface, and
exposes a simple memory address-/data-bus (widwaektra control signals) to be used by the
BAR modules. The structure of this sample designbmseen in figure 4.a.

A
PXPIPE
v
Top
2 2
PXPIPE, TRN & CFG TRN & CFG | Application
4 A
PIPE TRN
(IPcore) v
PIO_EP PIO
- TRN
(Packet handler) (< >
I BAR interface

Figure 4.a: The sample design structure (simplified).

The modules are:

- Top: TheTop module instantiates the PIPE core and applicatiodule, and provides
buffering for both the physical in- and outputs &mel signals for the transaction interface
exposed by the PIPE core.

- PIPE: The PIPE IPcore handles the lower layers of theBX@ress protocol. It connects
(through theTop module) to a separate PHY chip through an 8-t 251z PXPIPE interface

1 A list of class codes can be found in appendix P® Express System Architecture (for PCI v.2.3) (see the literature
list for more info), or at: http://www.acm.uiuc.gdigops/roll_your_own/7.c.1.html (for PCl v.2.0)

Simon Falsig, SDU, FORK-project autumn 2007



Journal 2, Creation of FPGA designs Page 3 of 7

on one side, and exposes a configuration and aaction interface (also through thep
module) on the other side. It also provides th® 82z transmission clock signal used to
clock the rest of the structure.

- Application: TheApplication module instantiates tHd O module.

- PIO: This module instantiates tiRtO_EP module, and a module for handling PIO turn-off
requests from the host systems (not shown on f&jure

- PIO_EP: This module instantiates receive and transmit rfesvhich connect to the
transaction interface of the PIPE core. These leatheitoding of received packets, and
encoding of packets to be returned. A simple reat¥unemory interface (the BAR interface)
is exposed.

The structure is not optimal due to two reasonse-BAR modules do not have access to the cfg
interface, and if they need to be connected to ipay#O pins on the FPGA, four modules will
need to be modifiedTop, Application, PIO andPIO_EP). Instead, the BAR hardware interface is
run through the?lO module to theApplication module. The BAR hardware will then need to be
instantiated from here, as can be seen in figure 4.

A
~ FPGA PXPIPE
\ 4
Top
A A
PXPIPE, TRN & CFG TRN & CFG
v A\ 4
PIPE Application
(IP Core)
7} 7}
BAR interface o PIO
l TRN & BAR interface
7} _
v TRN & BAR interface
PIO_EP
(Packet handler)

Figure 4.b: The used structure (simplified).

It should be noted that the PIO functionality usksks not support some of the more advanced
features that are possible with PCI Express. § sapports single DWORD memory read and write
transactions to a 32 bit memory space. Also, delagsponses are not supported, so only one
transaction can be running at a time.

As pointed out, all modules are generated using\elog language. This is not too practical
though, as VHDL is currently the only used HDL laage at SDU. For this reason, #yaplication
module, which is the module expected to be modifirdmost, is rewritten using VHDL. The only
other module that would need modifications (exdépbr instance more functionality is needed
from the PIO module) would be th@op module, when external I/O pins are needed. Asldtgri
and VHDL are rather similar, this is not seen ggablem though, as it should be easy to add the
few needed lines of code, without having to dorgdastudy on the syntax of Verilog.

Simon Falsig, SDU, FORK-project autumn 2007



Journal 2, Creation of FPGA designs Page 4 of 7

5 The BAR hardware interface

The existing BAR interface in the example designsists of a 10 bit address bus, a 32 bit data bus,
byte enable signals, and write-enable and -busyatsgBefore deciding on the specifications of the
interface to implement, some information was gatdrom the project groups from journal 1. It
was determined that most projects at SDU do notstesedardized interfaces like Wishbbnia
spite of these making reuse of existing modulessiptes (or in any case, easier). Instead, most
projects simply use whatever interface is at hamdthe easiest to implement. It was therefore
decided to make the BAR interface as simple asilplessvhile still retaining enough functionality
to be usable with a large number of different BA®Rdware modules.

The created BAR interface is based on the intertagemsed by the sampRIO module. A few
control-signals have been added, and some signatfplexed to allow the interface to work with
up to six BAR modules in one design. It is a mastave setup, with the BAR modules as slaves,
and thePIO module as master. It consists of the followingalg:

(Inputs are signal® the BAR modules, outputs are signgsm the BAR modulesShared implies
that all BAR modules are connected to the sameakigniltiplexed implies that only the currently
selected BAR module is connected to the signal.)

- trn_clk: Clock signaljnput, shared. This is the 62.5 MHz clock signal from the PIRkEe;
which the interface is clocked in relation to.

- trn_reset_n: Reset signainput, shared. This is the active-low reset signal of the trantise
interface, and is asserted if the DCM generatingclk looses its input clock.

- rd_addr: Read address bus (30 bit)put, shared. This provides the address for read
operations, and addresses DWORDs. It is therefgmraatically DWORD aligned.

- rd_be: Read byte enable (4 bithput, shared. This is a byte enable used when transmitting
data of 3 bytes or less, sinak data will always be 32 bit. A logic ‘1’ signals thateh
corresponding byte in read data is enabled.

- rd_data: Read data (32 bithutput, multiplexed. This is the data read from the BAR module.

- rd_en: Read enable (1 bitipput, multiplexed. This active high bit is used to signal a read
operation to the targeted BAR module.

- rd_busy: Read busy (1 bitputput, multiplexed. This active high bit is used by the BAR
modules to signal that a read is in progress.

- wr_addr: Write address bus (30 bithput, shared. This provides the address for write
operations, and addresses DWORDs. It is therefdmratically DWORD aligned.

- wr_be: Write byte enable (8 bit)nput, shared. This is a byte enable used when transmitting
data of 3 bytes or less, or when transmitting tfzais not fully DWORD aligned. A logic ‘1’
signals that the corresponding byte in write datanabled.

- wr_data: Write data (32 bit)input, shared. This is the data to write to the BAR module.

- wr_en: Write enable (1 bit)input, multiplexed. This active high bit is used to signal a write
operation to the targeted BAR module.

- wr_busy: Write busy (1 bit)putput, multiplexed. This active high bit is used by the BAR
modules to signal that a write is in progress.

- bar_select: BAR select register (7 bits). This register comsathe currently active BAR (one-
hot encoded, active high), and can thus be usadakect/enable signal for the BAR modules if
necessary.

! Wishbone is an open-source hardware bus. Thefigagicin can be found inDatasheets\Wishbone_b3.pdf” on CD1.

Simon Falsig, SDU, FORK-project autumn 2007



Journal 2, Creation of FPGA designs Page 5 of 7

5.1 Read operation

An example read operation that reads from a negatilge clocked blockram can be seen in figure
5.1.a.

trn_clk

bar_select

rd_be

rd_addr

rd_en

rd_data

rd_busy

O r O FrPO kP Ok O F O Fr Ok

Figure 5.1.a: A read operation.

Data fromrd_data is read into thélO module on the first rising edge of the clock afebren goes
high whererd_busy is not set (the red line). If the BAR module ig able to driverd data with
valid data before the next rising edge of the clafier rd_en goes high, it will need to drive
rd_busy high until valid data is present od_data. This can be seen in figure 5.1.b.

trn_clk

bar_select

rd_be

rd_addr

rd_en

rd_data

rd_busy

O r O FrPO kPO kP O FkF O FkF Ok

Figure 5.1.b: A read operation using rd_busy.

Here the BAR module is not able to produce valithdeithin one clock cycle, and therefore needs
to setrd busy high until valid data is present od data.

Simon Falsig, SDU, FORK-project autumn 2007



Journal 2, Creation of FPGA designs Page 6 of 7

5.2 Write operation

An example write operation that writes to a negadge clocked blockram can be seen in figure
5.2.a.

trn_clk

X

bar_select

wr_be

wr_addr

wr_en

wr_data

VALD

wr_busy

o roro rokrRr o kror oPRr

Figure 5.2.a: A write operation.

The red line indicates the point at which data fnemdata is read into the blockram. The data on
wr_data is only guaranteed to be valid as longvasen is high.wr_data remains high until the next

rising edge of the clock whewr_busy is not set. Therefore, if the BAR module is noeaio read

in the data within one clock cycle, it will need setwr_busy high until the write has been

completed, to signal to tHd O module that it needsr_data to be kept valid for a longer period.

An example of this can be seen in figure 5.2.b.

trn_clk

X

bar_select

wr_be

wr_addr

wr_en

wr_data

VALID

wr_busy

o roro rokrRkr o kror oPRr

Figure 5.2.b: A write operation using wr_busy.

Simon Falsig, SDU, FORK-project autumn 2007



Journal 2, Creation of FPGA designs Page 7 of 7

6 The designs

Four FPGA designs have been created for the prdjeese can be found as Xilinx 9.2 ISE projects
in the “Source\FPGA _Design” folder on CD1. The designs are further descrilmetheir respective
applicationguides. The projects are:

- Empty: The Empty project contains the described structure (inclgdive PIPE an&lO
modules), but no BAR modules. It is meant to bedwsea starting point for new designs using
the Spartan3 PCI Express Starter Kkit.

- 10ControlDemo: This design builds on thiempty design. It includes the BAR module from the
original demo design, which can access the buttoddeds on the Spartan3 PCI Express
Starter kit board as BARO, an 8 kB blockram as BAdRd a PIPE core setup to match this.

- VGADemo: A design built on th&mpty design. This uses a 24 kB blockram at BARO as a
framebuffer. An additional module reads the franftgsiand outputs it on the VGA port.

- DDRControllerTest: This design does not build on tBepty design. It consists of a DDR
memory controller connected to the DDR memory @Spartan3 PCI Express Starter kit. A
testbench is included to verify that it is opera#ib

7 Conclusion

An FPGA design structure with a working PCI Expregerface and an interface for hardware
modules has now been created. Up to six indeperdedivare modules are supported at a time,
through a multiplexed bus. The Xilinx Endpoint PIR& PCI Express IPcore is used, which
implements a complete PCI Express protocol.

Using this structure, three designs have beenameata base desigigmpty, without hardware
modules, to be used as a starting point for newgdss the |IOControlDemo with modules
implemented to control the onboard leds and butamt an 8 kB blockram, and tR&SADemo
design demonstrating the use of the VGA port. Tossibilities of using the onboard DDR RAM
memory for storage have also been investigated,aatest designDDRControllerTest, has been
created. This has been brought up and running,candsuccessfully access the onboard DDR
memory. It is not implemented together with the FERpress interface though. The designs are
further described in the applicationguides.

The performance will be evaluated when a driverliesen created.

Simon Falsig, SDU, FORK-project autumn 2007



