Journal 4, Performance test Page 1 0of 4

Journal 4, Performance test

1 Objectives

The performance of the created set of drivers qmiiations for both Windows and Linux needs
to be tested. This will be done on both platformdar various environments.

2 Problem analysis

The theoretical maximum transfer speed across @leERpress x1 interface is 250 MB/s in each
direction (data will only be transmitted in one watya time during this test). It is however not
expected that effective transfer speeds of thisnibade can be reached with programmed I/O. As
the x86 architecture of the host system is limttetransfer 1 DWORD per read or write command,
there will be quite a bit of overhead. Just for trensaction layer, a read command consists of a
total of 7 DWORDs being transmitted (3 for the resfuand 4 for the completion), while a write
request consists of 4 DWORDs (4 for the requestampletion is sent as memory write is a posted
transaction). On top of this comes additional oeacthfrom the datalink and physical layers. Also,
as both Windows and Linux use multitasking, it & to be expected that a driver will be allowed
to transmit and receive data uninterrupted.

To test the performance, four different tests inows environments are performed. The tests are:

- Application-controlled write: A register on the Spartan3 board is repeatedlitemriL000000
times using a for-loop in the application, whicti€#he write-register driver function for each
run through the loop. The execution time of thelémp is then timed.

- Application-controlled read: Similarly, this performs 1000000 reads, usinggame technique
as described above.

- Driver-controlled write: The two above tests will result in extra overhaadhe driver is called
once for each of the 1000000 reads or writes. THsisinstead places the for-loop inside the
driver, so that only one request is send from fh@ieation. This requires a new function and
control code to be added to the drivers, includingctionality to time the for-loops, and return
the time taken to the application.

- Driver-controlled read: This works in a similar way to the driver-contealwrite, but is just
performing reads instead.

3 Software and FPGA design

The drivers and applications designed and createpburnal 3 are used, with the mentioned
functionality added. The code for driver and apgimns can be found on CD1 in the folder
“Source\Windows Device Drivers and_Applications\Performancetest” for the Windows version,
and in ‘Source\Windows Device Drivers and_Applications\Performancetest” for the Linux
version. ThelOControlDemo FPGA design is used again. Further info can bendoin the
“Performance test” applicationguide.

Below is described how the timing is performed.

3.1 Timing in Windows, application-control

For the application-controlled test in Windows, tRetTickCount() function is used. This returns
the number of milliseconds elapsed since the systas booted. By calling this function right
before and right after the reads/writes, the nunabenilliseconds used can be found by taking the
difference between the end and start times. Ralas not considered an issue, as this only
happens every ~50 days.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 4, Performance test Page 2 of 4

3.2 Timing in Windows, driver-control

GetTickCount() is only available from user-mode applicationsjrstead the kernel-mode function
KeQueryTickCount() is used. This returns the number of ticks sincgesy boot. The amount of
ticks it takes to get through the loop is returt@dhe application as the first valuepBuffer. The
duration of a tick varies from system to systemths® needs to be send back to the application also
The tick duration is retrieved througteQueryTimelncrement(), and is stored as the second value in
pBuffer.

3.3 Timing in Linux, application-control

Under Linux, the functioietTimeOfDay() is used for user mode timing. It returns the qurteme
as the number of seconds and microseconds sindOT0l

3.4 Timing in Linux, driver-control

Similarly to KeQueryTickCount(), the amount of ticks after system boot are used.Ha Linux,
this value is stored in the system-wiglfies variable. The tick duration can be derived frora th
system-wideHZ variable, which specifies the number of ticks pecond. A separate driver-call is
created for returning thidZ value to the application.

4 The test
The tests will be performed in the following enviments:

- Windows, checked build, HT enabled
- Windows, checked build, HT disabled
- Windows, free build, HT enabled

- Windows, free build, HT disabled

- Linux, console, HT enabled

- Linux, console, HT disabled

- Linux, kde, HT enabled

- Linux, kde, HT disabled

The reason for testing with HyperThreading (HT)hbehabled and disabled is that it might affect
the number of necessary context switches, andlii@nepact performance. HT can be enabled /
disabled through the system bios at boot.

It should be noted that due to differences in thetmeasurement functions, the resolution of the
timing varies between Windows and Linux, and betweser- and kernel-mode.

All tests are run three times, and the average isnased. The complete set of results can be seen |
the folder ‘Data\Performance test” on CD1. The effective transfer speeds (the amairdctual
data transferred) can be seen in figure 4.a.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 4, Performance test Page 3 0of 4

Write, driver-controlled Read, driver-controlled

30518

30,518

29,387

31971

31,789

31,789 2,390

31,447 2,404

31,447 2,400

0,000

5,000 10,000 15,000 20,000 25,000 30,000 35,000 0,000 0,500 1,000 1,500 2,000 2,500 3,000

Write, application-controlled Read, application-controlled

1877 0,650

895 0,653

0,382 0,336

0,382 0,335

7,587 1,840

6436 1812
1,880

6,591 1815

0,000

1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000 0,000 0,200 0,400 0,600 0,800 1,000 1,200 1,400 1,600 1,800 2,000

O Linux, Console, HT enabled BLinux, Console, HT disabled DOlLinux, kde, HT enabled OLinu, kde, HT disabled
B Windows, checked, HT enabled BWindows, checked, HT disabled @Windows, free, HT enabled OWindows, free, HT disabled

Figure 4.a: The results of the test. All graphs show the effective transfer speeds, values are in MB/s.

The first thing to notice is that the transfer sfseas expected, are far away from the theoretical
maximum of 250 MB/s. A maximum effective write sdeef about 30 MB/s, and a maximum
effective read speed of about 2.5 MB/s are achiewdrn using the driver-controlled approach.
With application-control, and thus a substanti@réase in the amount of overhead, about 7 MB/s
for writes and 2 MB/s for reads is reached withuxrand less than 1 MB/s either way under
Windows. The reason for the larger performanceniti application-control on Windows than on
Linux, is probably due to differences in the wayide drivers are accessed, and/or the internal
scheduling of processes within the kernels. Thials® evident as the tests with driver-controlled
writes and reads, for which the kernel-mode codé&innx and Windows is nearly identical, result
in very similar performance for both Windows andux.

Recall that, considering the overhead, the actaabkter speed for the write operations is roughly 4
times higher than the effective speed, while @bsut 7 times higher for the read operations. Ehis
not enough to explain the large difference betwean and write speeds though. But the difference
could be due to the read operations being non-gosésulting in the OS switching to another
process while waiting for a response to the regdest. The write operations however, are posted
transactions, and can thus be performed withoudingeo wait.

The difference between checked and free builds udedows is also clear. With free builds, all
debug information (including test output to the uiglsonsole) is stripped from the driver. This does
not have much of an impact with driver-control, the for-loops do not include any debug
messages. The single-register versions of the amiteread functions used with application-control
do however write a line to the debug-console e&uke they are called, resulting in the lowered
performance.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 4, Performance test Page 4 of 4

It is also interesting to see that while not havingch impact in most of the tests, enabling HT
actually noticeably decreases performance undarxwith application-control. The reason for this
is unknown, as HT is notorious for giving performarboosts under certain conditions, while in
other cases slowing things down.

5 Conclusion

The performance of the created drivers and appmicathas now been tested. As there is a
substantial amount of overhead present, in botthtdst OS and in the PCI Express transfer itself,
the performance is far away from the theoreticakimam of 250 MB/s. By using the driver-
controlled approach and thus minimizing the ovedheahe host OS, a best-case transfer speed of
~30 MB/s when writing to and ~2.5 MB/s when readirgn the board has been achieved on both
platforms. This only works for large transfers wdatl data is transferred to/from the driver in one
request. When transferring single DWORDS, the smlthl overhead of calling the driver has a
higher influence, and drops the transfer speedsveth below 1 MB/s in both directions on
Windows, and to around 7 MB/s writing and 1.8 MB#ading on Linux.

Sadly this is far away from the desired transfeeesp of 180 MB/s. It should therefore be
investigated if it is possible to improve on thereat performance.

Simon Falsig, SDU, FORK-project autumn 2007

