Journal 3, Creation of device drivers and applications Page 1 of 12

Journal 3, Creation of device drivers and applications

1 Objectives

To use the Spartan3 PCI Express Starter kit, sawea drivers are needed. The objective of this
journal is to describe the creation of such driiersboth Windows XP and Linux 2.6 that allows
other applications to read from and write to regision the board.

2 Problem analysis

The Spartan3 PCIl Express Starter kit includes aodapplication for Windows. The demo
application consists of the following:

- A Windows device driver for the board, providingh@iions for setting and retrieving the state
of the leds, and retrieving the state of the bugttdine driver is written using C.

- A small application with a GUI, which allows a ugerinteract with the board. The application
is written in Visual Basic, and accesses the dediseer throughdrivermanager.di(the
sourcecode for the .dll is unavailable).

The source code for this, except the interface éetwthe application and the device driver, is
available in the ToolsSpartan3 PCI Express Starter kit Dehfiolder on CD1.

The Windows driver will need a few modificationgy finstance the addition of a few primitive
functions for reading and writing single registdosit is, apart from that, useable. For Linux, a
driver will need to be written from scratch.

The Windows application is close to useless, as 8b&s not use Visual Basic (and so there is no
developing environment available), and as C/C+thes preferred language for the application
anyway. So instead a new application will be wnithe®m scratch using C/C++. The same goes for
the Linux versions. The applications will be crebées console applications, to avoid spending too
much time with GUIs.

So the following needs to be done or created:

- The existing Windows device driver from the demedseto be modified, by adding
functionality to set and get single registers diyec

- A Windows console application, which can use thaaiedriver to communicate with the
Spartan3 board.

- A Linux 2.6 device driver with functionality for #a1g and getting registers needs to be
created.

- A Linux console application that can access thetionality of the device driver and
communicate with the Spartan3 board.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 2 of 12

3 Device driver basics
A typical workflow for a PCI/PCI Express devicewdt can be seen on figure 3.a.

Locate supported Initialize found Register driver Respond to
Load device(s) .| device(s) and .| functionality with .| requests from
' "| retrieve available "| the host OS "| applications
resources

A

Figure 3.a: A typical flow for a PCI/PCI Express device driver.

A device driver needs a specified entry functioat is run when the driver is loaded. This entry
function is then responsible for making sure thatrecessary initialization is performed.

First, the supported hardware needs to be found iShusually done by searching for a specific
Vendor and Device ID (as specified in the configiora header of the PCI/PCI Express device)
amongst the devices on the PCI/PCI Express bus.

If one or more devices are found, these need toiti@lized, and their resources (BARs) need to be
mapped to the memory range of the host OS.

The third step is to tell the host OS about thecfimmality this driver provides to other applicats

so that these can access the driver. This is typidane through a special structure, in which a
function pointer is stored for each kind of requibst driver can handle (for instance, open, close,
read, write, device control, etc). On Windows tisiscalled the “dispatch table”, while the Linux
equivalent is called a “file operations structugef fops).

After registering its functionality the driver waituntil called upon by an application, and then
performs whatever was requested of it.

Drivers can implement functionality for all the rmagjl/O request types. In this particular case
however, only one is actually needed. The requps is calledDevicelOControlin Windows and
ioctl in Linux. It sends an I/O control code and a daiater from an application to the device
driver. The request function in the device drivieert typically does a switch-case on the control
code, and can, using the data-pointer for bothtimma output, perform a large range of various
functions.

4 FPGA Design

For testing the drivers, tH®ControlDemoFPGA design is used (see journal 2). This implemen
two 8 kB memory-type BAR modules. BARO is used tocess the onboard leds and buttons, and
provides four registers mapped as follows:

Register 0 (Ox00)Retrieves and sets the state of the single udgibie0)
Register 1 (Ox04)Retrieves and sets the state of the eight let5{©)
Register 6 (0x18)Retrieves the state of the DIP-switches (bit 3-0)
Register 9 (0x24)Retrieves the state of the user pushbuttons {@)t 1

BARL1 just provides an 8 kB blockram with read amitevaccess.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 3 of 12

5 Windows driver

The existing Windows driver from the demo comeswmitost of the functionality that is needed. It
consists of a number of files, of which the mospartant are:

- s3_1000.cincludes thériverEntry() function that is run at load, and tGentrol() function
that handle®evicelOControlrequests. It is in this function that the new mgmead and
write functions will need to be added.

- s3_1000.hDescribes special data structures used by theeleviver.

- pnp.c:Contains various functions that are used to iiggathe board, and extract and setup its
resources so they can be used by the driver.

- ioctrl.h: This file holds the definition of the I/O controbdes that can be used with
DevicelOControl This file needs to be included by any applicatioat wants to use
DevicelOControlrequests with the device driver. Entries for teernmemory read and write
functions will need to be added in here. The uniGWHD of the driver, which can later be used
to identify it, is also specified.

The driver is found in SourcéwWindows_Device Drivers_and_Applicatidi@ControhDriver” on
CD1.

5.1 Adding new control codes

Two new functions are needed, one that writes glessiDWORD register, and one that reads a
single DWORD register. First, control-codes fordbare created inctrl.h. This is done using the
following form:

#define MDS_IOCTL_ Devi ce_Functi on CTL_CODE(Devi ceType, Function, Method, Access)
The parameters in italics are:

- Device_FunctionThe name of the control code, which should desdtile functionality it is
assigned to. The following will be useREAD_REGISTERNdWRITE_REGISTER

- DeviceTypeDescribes the type of device. The Spartan3 bodritialized as a
FILE_DEVICE_UNKNOWNSso this will also be used here.

- Function: A unique integer index, used to distinguish défgrcontrol codes from each other.

- Method:Used to describe the method used for passingogdieeen the application and the
device driver. Here, buffered I/O will be used @&t copied between user-space and kernel-
space, as opposed to direct I/O where data isféiaiad directly between user-space memory
and device memory — direct /O can be faster fagddransfers, but takes extra code to setup).
This is indicated witt METHOD_BUFFERED

- AccessUsed to describe access-rights (read-only / vanitly). There is no need to restrict this
in any way for the test application, BlLE_ANY_ACCESH used.

A thorough specification on defining control codes be found at MSDN

! “Defining 1/0 Control Codes” at http://msdn2.misadft.com/en-us/library/ms795909.aspx

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 4 of 12

Using these, the two lines that are addedd¢trl.h are:

#define MDS_IOCTL_READ_REGISTER CTL_CODE(FILE_DEVI CE_UNKNOWN, \
0x010, \
METHOD_BUFFERED, \
FILE_ANY_ACCESS)

#define MDS_IOCTL_WRITE_REGISTER CTL_CODE(FILE_DEV ICE_UNKNOWN, \
0x011, \
METHOD_BUFFERED, \
FILE_ANY_ACCESS)

5.2 Adding new functions

The new functions then need to be added inGbatrol() function ins3_1000.c This function
includes a switch-case statement, with a casellftieacontrol codes iroctrl.h. The new functions
should simply be added as cases in this stateffieatcode used for the two functions is:

case MDS_IOCTL_READ_REGISTER:
address = (ULONG) deviceExtension->MemoryStart[pBu ffer[0]] + (pBuffer[1]<<2);
length = 1;
KdPrint((“\nRead register at: %x\n”, address));
pBuffer[0] = READ_REGISTER_ULONG((PULONG) address) ;
break;

case MDS_IOCTL_WRITE_REGISTER:
address = (ULONG) deviceExtension->MemoryStart[pBu ffer[0]] + (pBuffer[1]<<2);
length = 0;
KdPrint(("\nWrite register at: %x\n”, address));
WRITE_REGISTER_ULONG((PULONG) address, (ULONG) pBu ffer[2]);
break;

In the above code, there a couple of important eptsc
- pBuffer: A pointer to the 1/0 buffer of the device drivarput from the calling application is

received from here, and output is written to ibalBhe number of output bytes to write back to
the stack is set usirigngth

- deviceExtension->MemoryStart[<index>T-he base address of a specified BAR as seen by the

kernel. To obtain the address of a specific regighe index of the BAR is passed through
pBuffer[0], and the offset of the register is passed thrqRyiffer[1]. The offset is shifted left
two places (as it is a DWORD offset) and addedhéoldtase address.

- KdPrint: Prints a message that can be read with a kerbebder. This is not necessary for the
functionality, but nonetheless nice to have foruwtghng purposes.

5.3 Assigning a GUID

To make sure that the driver is only used with magibns that are intended for it, a new globally
unique identifier (GUID) should be assignedantrl.h. The GUID can then be used by applications
to obtain a handle to this particular driver. GUI&s be created using tB&JIDgert tool.

5.4 Building and installing the driver

To be able to build the driver, it is necessaryinstall the Windows Driver Kit (WDK). Once
installed, it is possible to start various buildrieonments, depending on the target platform of the
driver (Start -> Programs-> Windows Driver Kits Each platform has a ‘Checked’ and a ‘Free’
environment, corresponding to debug and releaseatyp found in other build tools. A ‘checked’

1 GUIDgen can be found in thepolsfolder on CD1.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 5 of 12

build will include all debug output and similar, Wehthese will be stripped from ‘free’ builds,
producing a smaller and faster driver.

Here, the Windows XP x86 Checked build environmentised. The demo device driver comes
with a usable make-file. The only thing that is aggmtly missing is the filafxres.h which can be
copied to the driver folder from thm&\mfc42folder in the WDK installation folder.

As the sample driver comes with the necessary ritek#ie build process can be started by simply
issuing the commanbluild in the driver folder from the build environmenté driver file is called
s3_1000.sysand is located in the subfoldebjchk_wxp_x86386.

To install the driver, a driver installation infoatimon file (.inf) is needed. The demo application
comes with a usable fil@émsetup.infthat just needs to be placed in the same folgeha driver
file. The driver can now be installed using thendrd Windows driver installation featuré3o(not
connect to Windows Update Install from a list or specific locatior> Do not search for driver>
Have diskand then point abemsetup.inf For the project, new .inf files have been maateeach
driver (both for checked and free builds).

5.5 Debugging

Debugging kernel mode drivers is not an easy taskan error more often than not will lead to a
system crash. The best way is to use two systenesfar testing the driver, and another connected
to the test system which runs the debugger. Thimisalways possible though, and usable results
can also be obtained with only one machine. Midtokas created a package calledbugging
Tools for Windows which can be used both with one or two systen& fackage includes the
applicationWinDbg which provides access to the kernel console.sSkoitlocally, Windows needs

to be booted with thédebugparameter, which should be added to the line loats the used
Windows installation irc:\boot.ini. An exampléboot.inicould be:

[boot loader]

timeout=30

default=multi(0)disk(0)rdisk(0)partition(1)\WINDOWS

[operating systems]

multi(0)disk(0)rdisk(0)partition(1)\WINDOWS="WinXP”" [fastdetect /debug

After booting with this parameter, debugging idiated by startingVinDbgand choosindrile ->
Kernel Debug-> Local This will open the kernel console, which can b&ashed by using the
commanddbgprint As the debugger is run locally, many of the madeanced functions are not
accessible, but just having access to the kermsdate to read messages from the driver is stitiequi
helpful.

6 Windows Application

To use the device driver, a console applicatiot lvglbuilt. The application and its sourcecode can
be found in SourcéWindows_Device Drivers_and_Applicatiti@®ControlMApplicatiori on CD1.

The application will need to locate the device drito use, open it, and be able to send requests to
it. To accomplish this, the following functions arged:

- SetupDiGetClassDevs(Jthis command is used to retrieve a handle to a&denformation
structure, that holds information for a set of degi matching the parameters. Here, the
ClassGuidparameter is used to identify the driver, usirgghme GUID as specified in
s3_1000.hn the device driver.

More info: http://msdn2.microsoft.com/en-us/librang792959.aspx.

- SetupDiEnumDevicelnterfaces{)his is used to retrieve and identify a specifidexed device
interface in the aforementioned set. In this csefirst device in the set is retrieved.
More info: http://msdn2.microsoft.com/en-us/libramg791242.aspx.

! The Debugging package can be found inTtbelsfolder on CD1.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 6 of 12

- SetupDiGetDevicelnterfaceDetailRetrieves the details of the selected devicefater This
is actually called twice. The first time to retréethe size of the detail structure, so that a
properly-sized buffer can be allocated. The seaatithen actually retrieves the details, and
stores them in the allocated buffer.

More info here: http://msdn2.microsoft.com/en-usAry/ms792901.aspx.

- CreateFile(): This function creates a handle to and opens thieeleThe device to be used is
determined from the device-name in the retrieveadil$estructure.
More info: http://msdn2.microsoft.com/en-us/librag363858.aspx.

- DeviceloControl():Sends a request to the device driver. The handlgetopened device, the
control code of the desired function, and varioomers and variables concerning in- and
output data are used as parameters.

More info: http://msdn2.microsoft.com/en-us/librag363858.aspx.

The application is now built using MingW, by chaogExecute-> Compilefrom within Dev C++.
The ioctrl.h file from the driver is included to gain accessthe used GUID and the defined
control-codes. The application needs to be linketh wihe setupapi library, which is done by
passing the flaglsetupapito the linker, and making sure that such a filmithe path. In Dev C++
this can be done by choosiigols-> Compiler Optionsand adding-Isetupapiin the Add these
commands to the linker command limex.

7 Test of Windows device driver and application

The functionality of the driver and application noweds to be tested. This is done with calls to
DeviceloControl()using the two new functions to read and write s&gs. It is chosen to write to
register 1, which controls the led-bank, and tadrezgister 9, which holds the state of the user
pushbuttons. It is expected that the write will thet leds to a chosen pattern, and that the refhd wi
return 0, 1, 2 or 3, depending on whether the putshibs are activated or not (the pushbuttons are
active-low).

Running the application produces the expected tesWriting the pattern 0x55 (0b01010101) to
the led-bank results in every other led being tdrae, and the rest off. Reading correctly returns
the value 3 when no buttons are pressed, 0 whdndret and 1 or 2 when only one of the buttons
is pressed.

8 Linux driver

The Linux device driver needs to be written fromasch. This is done in accordance with the book
Linux Device Driver5(LDD). The Linux driver will be quite a bit simpiéhan the Windows driver,
as it will only include what is absolutely necegsar initialize the card and read and write registe
(as opposed to the Windows driver, which is abléaadle numerous additional events such as
card-removal and similar).

The driver will be created as a module, and wikahéhree functions, one to handle initialization,
one to handle cleanup, and one to handle requEstse functions will be put in the fiE8pcie.c
Additionally, two control-codes need to be definethjch will be done irs3pcie.h

The driver is found inSourcéLinux_Device_Drivers_and_Applicatioh®Contro\Driver” on

CD1.

! See the literature list. The book can be freedyritiuted, and is included in the foldesitiux Device Drivers, Third
Edition” on CD1.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 7 of 12

8.1 Defining control codes

Two control codes need to be defined, one for madifor write. Linux control codes are defined
using one of the following forms:

#define CODE_NAME 10(type, nunber) /INo parameters/return values
#define CODE_NAME IOR(type, nunber, size) //Reads datafrom driver
#define CODE_NAME IOW(type, nunber, size) //Writes data to driver
#define CODE_NAME IOWR(type, nunber, size) //Bidirectional transfer

Typeis an 8 bit long so-called “magic” number, whichpreferably a unique number assigned to
only this device driver. The magic number does *m&ed* to be unique, but by using different
numbers for all device drivers, the risk is lowetkdt a request by accident is sent to and handled
by another driver than the intended receiver. Adfsexisting and already assigned magic numbers
can be found in the filéoctl-number.txtin the documentation folder of the Linux instabat
Looking through this list, the magic number OxAZ®sen.

Numberis an index of the control code, and can justdmpiential numbers.

The sizefield can be used when a single value needs feabsed between application and driver.
This field is not mandatory, but can ease the utghchecking of passed arguments as the control
code will then include information about the dedisize of the argument. If structures or arrays are
required, the field can be ignored.

Using this, the control codes $3pcie.hare defined as:

#define S3PCIE_IOC_MAGIC OxA5

#define S3PCIE_IOREAD_DWORD _IOWR(S3PCIE_IOC_MAGIC , 1, int)
#define S3PCIE_IOWRITE_DWORD _IOW(S3PCIE_IOC_MAGIC , 2, int)

#define S3PCIE_IOC_MAXNR 2

Notice that the read control code is defined asWIR) as the address is passed from the application
to the driver, and the data read is then passekl G&e sizefield is not used, as pointers will be
transferred between application and driver. Thedafine is used in the driver for a quick check to
see if a received control code is valid.

8.2 Includes and defines
The driver needs to include a number of heades:file

- <linux/init.h>: Provides functionality for specifying which funatis to use for initialization
and cleanup.

- <linux/module.h>:Contains various useful definitions and symbols.

- <linux/pci.h>: Provides functionality for accessing PCI (and E&press) devices.

- <linux/cdev.h>:Contains functions used for registering functidgadith the kernel.

- <asm/uaccess.h>Contains functions used for checking the validitynemory locations
passed from user-space.

- “s3pcie.h”: Contains a specification of the control codes used

The Linux kernel keeps track of the license undkictv various modules are distributed. Using a
proprietary module will set a “tainted” flag in tkernel. The kernel will continue to work just fine
but in some cases Linux developers will be lesslyiko help users with tainted kernels, as it is no
possible to look through and debug the source obdé the loaded modules.

To set the license for a module, the following noaisrused:

MODULE_LICENSE(*GPL");

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 8 of 12

As the driver is not going to be distributed ingtgrent state, the choice of license does notanatt
much. In this case the GPL license is used fos#ke of simplicity.

The next thing to do is to define the devices thet driver will work with in a device table. This
done using the Vendor and Device ids as specifigadurnal 2:

#define VENDOR 0x1597
#define DEVICE_ID 0x0301

static const struct pci_device_id s3pcie_ids[] =

{PCI_DEVICE(VENDOR, DEVICE_ID)},
{0.},
3

As with the Windows driver, information about whidéhnctions to call for various requests is
needed. This is specified in a file operationscétme. As onlyioctl requests will be used, the
following is enough:

static int s3pcie_ioctl(struct inode* inode,
struct file *filp,
unsigned int cmd,
unsigned long arg);

static struct file_operations s3pcie_fops =

{
.owner = THIS_MODULE,

.ioctl = s3pcie_ioctl,

b

Additionally, variables for storing the handle teetopened device, addresses of the BARSs, the used
device number, and a kernel structure represetitimgevice need to be declared:

static struct pci_dev *dev;
static void* bar_addr[6];

static dev_t first;

static struct cdev* s3pcie_cdev;

The last thing to do is to tell the driver about thitialization and cleanup functiors3pcie_init()
ands3pcie_exit() This is done with the following two lines, placatthe end of the file:

module_init(s3pcie_init);
module_exit(s3pcie_exit);

8.3 The initialization function

The function to use for initializing the board whityve driver module is loaded $8pcie_init() It is
declared using:

static int _init s3pcie_init(void)

The __init statement tells the kernel that the fiomcis only used during initialization and can shu
be removed to conserve memory once it has compléteal first thing to do in this function is to
tell the kernel about the device table definedfios driver:

MODULE_DEVICE_TABLE(pci, s3pcie_ids);

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 9 of 12

In Linux, devices are assigned major and minor@eenumbers. These need to be requested, which
is done with the following function:

alloc_chrdev_region(&first, 0, 1, “s3pcie”);

The first allocated device number is returned ia finst structure, the first minor number is
requested to b@, only 1 number is needed, and the device should be csBpdie With this done,
the appropriate device needs to be found and lingi

dev = pci_get_device(VENDOR, DEVICE_ID, NULL);
if(dev)
{

interr;
err = pci_enable_device(dev),

if(lerr)
{

int n;
for(int n=0; n<6; n++)

bar_addr[n]= ioremap(pci_resource_start(dev,0), pci_resource_len(dev,0));

s3pcie_cdev = cdev_alloc();
cdev_init(s3pcie_cdev, &s3pcie_fops);
s3pcie_cdev->owner = THIS_ MODULE;

cdev_add(s3pcie_cdev, first, 1);
}
}

The first call retrieves the first device that nies the specifiedENDORandDEVICE_ID (in this
case there is no reason to support more than odg tha device was foundlévdiffers from 0),
the device is enabled. If everything goes well, BARs are mapped to kernel memory, and their
new addresses are stored in the proper variabtes.|last four lines allocate and set up a cdev-
structure, which registers the drivers functioryalitith the kernel (notice that the3pcie fops
structure is passed along). After the last cadl,dhver is “live” and can be called by applicason

8.4 The ioctl function

The ioctl function is called whenever doctl request is received by the driver. Recall that the
function is declared like this:

static int s3pcie_ioctl(struct inode* inode,
struct file *filp,
unsigned int cmd,
unsigned long arg);

The inode and filp parameters correspond to the file descriptor ofbebg the user-space
application. Thecmd parameter holds the index of the control cauenr(bej for the request, and
the (optional)arg parameter can be whatever the user mode apphca@mts to pass to the driver
(here it is a pointer to a memory array).

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 10 of 12

The first thing to do is to check if the controldeois valid for this driver:

if(10C_TYPE(cmd) != S3PCIE_IOC_MAGIC) return —-ENOT TY;
ifC IOC_NR(cmd) > S3PCIE_IOC_MAXNR) return —-ENOTTY;

This checks both if the “magic” number matches tiahe driver, and also if the command number
is defined. After having validated the command, #wtual functionality of the ioctl function
follows:

switch(cmd)

{
case S3PCIE_IOREAD_DWORD:
get_user(stack[0], (int __user *)arg);

get_user(stack[1], (int __user *)(arg+sizeof(int)));
stack[2] = ioread32(bar_addr[stack[0]] + (stack[1] <<2));
put_user(stack[2], (int __user *)arg);

break;

case S3PCIE_IOWRITE_DWORD:
get_user(stack[0], (int __user *)arg);

get_user(stack[1], (int __user *)(arg+sizeof(int)));
get_user(stack[2], (int __user *)(arg+2*sizeof(int N);
iowrite32(stack[2], bar_addr[stack[0]] + (stack[1] <<2));
break;

default:
return —-ENOTTY;

}

For both cases the index of the target BAR is ghssethe first element in tteeg buffer, and the
address as the second element. 33PCIE_IOWRITE_DWORDhe data to write is passed as the
third element. Theget_user()andput_user()functions are used to move data between user-space
and kernel-space. Thieread32() andiowrite32() are very similar to the commands used in the
Windows driver, and simply read or write a 32 bigister.

8.5 The cleanup function
When the driver is unloaded a few things need tolé@ned up, which is done $8pcie_exit()

cdev_del(s3pcie_cdev);
pci_disable_device(dev);
pci_dev_put(dev);
unregister_chrdev_region(first, 1);

First, the functionality of the driver is unregistd from the kernel, to keep applications from
calling it. Next, the PCI device is disabled, ahd kernel is told that the device is no longerse.u
Finally, the assigned device numbers are unregister

8.6 Building the driver

To build the driver, a full kernel source tree anchakefile is needed. The source tree is instaked
a part of the full Slackware 12 installation, andthe case of building this module, a very simple
makefile is enough:

obj-m := s3pcie.o

This needs to be invoked from the root of the kiesmeirce folder /usr/src/linu®, which can be
done like this:

make —C /ustr/src/linux M="pwd"

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 11 of 12

As this gets a little tedious to write every tinhe driver needs to be rebuilt, a makefile that kesd
this is used instead

If KERNELRELEASE is defined, we've been invoked f rom the
kernel build system and can use its language.
ifneq ($(KERNELRELEASE),)

obj-m := s3pcie.o

Otherwise we were called directly from the comman d
line; invoke the kernel build system.
else
KERNELDIR ?= /lib/modules/$(shell uname -r)/build
PWD := $(shell pwd)
default:
$(MAKE) -C $(KERNELDIR) M=$(PWD) modules
endif

Using this makefile, it is enough to simply mraketo build the driver.

8.7 Loading the driver

To load the driver, thensmodcommand is used. However, for applications tolide 8o access the
functionality, a device node in thidev/folder needs to be created also. This deviceeated using
the following command:

mknod /dev/ Node_nane ¢ Mj or M nor

Node_namas the name of the node, ¢ specifies a charaaeice, andViajor and Minor is the
device number assigned to the device driver byk#dreel, when the driver is loaded. Thenor
number is just set to 0 (as done in the driver),dsutheMajor number is assigned dynamically, it
needs to be retrieved frofproc/devicesvhere all active devices in the system are listdds is
done using thewk command to search for the name of the module,tlaea return the number
listed next to it.

All this can be combined into a single scrilpia@) that loads the driver, and creates a correspgndin
device nod&

#!/bin/sh

module="s3pcie”

device="s3pcie”

/sbin/insmod ./$module.ko $* || exit 1
rm —f /dev/$device

major=$(awk “\$2==\"$module\" {print \$1}" /proc/de vices)

mknod /dev/$device ¢ $major 0

Therm command is used to remove old nodes (should tieeey) before creating the new one.

! The make file is adapted from LDD, chapter 2, p2ge
2 Theload andunloadscripts are adapted from LDD, chapter 3, page 47.

Simon Falsig, SDU, FORK-project autumn 2007

Journal 3, Creation of device drivers and applications Page 12 of 12

A similar script (inload is used for unloading the module:

#!/bin/sh
module="s3pcie”
device="s3pcie”

/sbin/rmmod ./$module.ko $* || exit 1

rm —f /dev/$device

After running the load script, the device and driaee ready for use.

8.8 Debugging

The easiest way of debugging drivers in Linux isise theprintk() function to print a message to
the system log. This can then be read directly frleenLinux console using tltinesgconsole call.

9 Linux application
The application is very simple, as the device isrmga with a single call to open:

int dev;
dev = open(*/dev/s3pcie”, NULL);

The string passed to open is simply the name ofdthece node, created by the load script. To
communicate with the driver, thectl() command is used, which has the following syntaxnfr
user mode applications:

ioctl(int fd, unsigned long cmd, ...);

Thefd argument is the handle returned by opencthdargument is the control code (as specified
in s3pcie.h, and any additional arguments can then be paalsed In this case, this will be a
pointer to an integer.

The application is build using GCC, with the folloy command:

g++ iocontrol.cpp

10 Test of Linux device driver and application

To test the functionality of the device driver amgblication, it is attempted to write the led bank
and read the pushbuttons on the Spartan3 boarsl.ig done by first writing an 8 bit pattern (0x55

is chosen, as it should produce alternating oncdihlds) to register 1, and then reading regiSter
and printing the value to the console.

The test is successful, as the correct patterean sn the leds, and as the result of readingtthe s

of the pushbuttons is correctly 3 when no buttaespaessed, 0 when both are pressed, and either 1
or 2 when only one button is pressed.

11 Conclusion

Drivers and simple applications for both Windows 2Rl Linux 2.6 have now been created. The
functionality is similar on both platforms. Eachopides a way of writing or reading a single

DWORD register on the board. This can be done faamser mode application through very similar
calls,DeviceloControl()on Windows, andbctl() on Linux.

This has been tested, and the functionality workbath platforms.

Simon Falsig, SDU, FORK-project autumn 2007

