
Journal 2, Creation of FPGA designs Page 1 of 7

Simon Falsig, SDU, FORK-project autumn 2007

Journal 2, Creation of FPGA designs

1 Objectives
The main objective is to create an FPGA design that supports the PCI Express interface, and
features a usable, generic interface for connecting this to other hardware modules inside the FPGA.
The design should also be created with the requirements regarding transfer speed and storage
possibilities specified in journal 1 in mind.
Additionally, it could be interesting to demonstrate some of the possibilities of the Spartan3 PCI
Express Starter kit, such as usage of the onboard DDR RAM memory and the VGA output port.

2 Problem analysis
The Spartan3 PCI Express Starter kit includes the IOControl sample demo design1. This is based on
the LogiCore Endpoint PIPE for PCI Express IPcore, and includes an implementation of a
programmable input/output system (PIO), and some functionality for accessing the leds and buttons
on the board through BAR0. It is written in Verilog. The demo is made for Xilinx 8.1 though, and
uses version 1.3.2 of the PIPE IPcore. Therefore it is not directly usable with Xilinx 9.2 which
comes with version 1.7 of the PIPE IPcore. It should be possible to reuse the functionality for
accessing the leds and buttons though.
The obtainable transfer speeds depend heavily on the host system, so the evaluation of these will
need to wait until some drivers have been created.
Another requirement is the possibility to store 100 MB of data on the board. The easiest way to
store data in a Spartan3 FPGA is usually to use the integrated blockram. However, as the used
FPGA only has 54 kB available, the onboard 128 MB of DDR SDRAM could be a possibility
instead.
So the following needs to be done:

- A new design and structure based on version 1.7 of the PIPE IPcore needs to be created.
- A BAR interface has to be specified and implemented.
- A few demo designs, exploring the possibilities of the board, including the DDR SDRAM,

need to be created.

3 The PIPE core
Xilinx provides the Endpoint PIPE for PCI Express IPcore, which implements all three layers of the
PCI Express protocol (physical, datalink and transaction). The core exposes a PXPIPE interface to
an external physical layer chip mounted on the Spartan3 board, and transaction (trn) and
configuration (cfg) interfaces to modules in the FPGA. The trn interface is used for communicating
with the host system over the PCI Express interface, and accepts and delivers TLPs. The cfg
interface provides access to the configuration space of the PIPE core.
The core has been tested and verified by Xilinx to comply with the PCI Express v1.1 standard, and
thus developers can concentrate on designing the actual functionality of the device, without
worrying too much about the PCI Express interface.
To use the core, a license is needed. For this project, a “Full System Hardware Evaluation” license
is used, which will work for 8 hours after loading the design into the FPGA2.

3.1 Generating the PIPE core

The described PIPE core can be generated directly from Xilinx ISE, by adding a new IP source and
selecting the Endpoint PIPE for PCI Express 1.7 core (under Standard Bus Interfaces -> PCI
Express). CoreGen will then popup a menu through which the PIPE core can be configured. The

1 This can be found in the ”Tools\Spartan3 PCI Express Starter kit Demo” folder on CD1.
2 More info: http://www.xilinx.com/ipcenter/ipevaluation/pcie_pipe_evaluation.htm

Journal 2, Creation of FPGA designs Page 2 of 7

Simon Falsig, SDU, FORK-project autumn 2007

most important parameters here are the vendor and device IDs (page 2), as these are used by the
host system to match the device to the correct device driver, and the BAR setup (page 3 and 4). The
following is used throughout the project for IDs and class codes:

- Vendor ID / Subsystem Vendor ID: 1597
- Device ID / Subsystem ID: 0301
- Revision ID: 00
- Base class: 0B (Processors)
- Sub-Class: 40 (Co-processors)
- Interface: 00
- Cardbus CIS Pointer: 00000000

The class codes1 can be set to more appropriate values if desired, but the ones listed work just fine.
The configuration of the BAR registers varies with the application. Other more advanced
parameters, like power saving, can be configured too, but here they are just kept at their default
values.

4 The overall structure
When generating the PIPE core with CoreGen, a sample design, including a programmed I/O (PIO)
module, is automatically generated also. The PIO_EP module hooks up to the trn interface, and
exposes a simple memory address-/data-bus (with a few extra control signals) to be used by the
BAR modules. The structure of this sample design can be seen in figure 4.a.

Figure 4.a: The sample design structure (simplified).

The modules are:

- Top: The Top module instantiates the PIPE core and application module, and provides

buffering for both the physical in- and outputs and the signals for the transaction interface
exposed by the PIPE core.

- PIPE: The PIPE IPcore handles the lower layers of the PCI Express protocol. It connects
(through the Top module) to a separate PHY chip through an 8-bit 250 MHz PXPIPE interface

1 A list of class codes can be found in appendix D of PCI Express System Architecture (for PCI v.2.3) (see the literature
list for more info), or at: http://www.acm.uiuc.edu/sigops/roll_your_own/7.c.1.html (for PCI v.2.0)

Top

PIPE
(IPcore)

Application

PIO_EP
(Packet handler)

BAR interface

FPGA

PIO

PXPIPE, TRN & CFG TRN & CFG

TRN

TRN

PXPIPE

Journal 2, Creation of FPGA designs Page 3 of 7

Simon Falsig, SDU, FORK-project autumn 2007

on one side, and exposes a configuration and a transaction interface (also through the Top
module) on the other side. It also provides the 62.5 MHz transmission clock signal used to
clock the rest of the structure.

- Application: The Application module instantiates the PIO module.
- PIO: This module instantiates the PIO_EP module, and a module for handling PIO turn-off

requests from the host systems (not shown on figures).
- PIO_EP: This module instantiates receive and transmit modules which connect to the

transaction interface of the PIPE core. These handle decoding of received packets, and
encoding of packets to be returned. A simple read/write memory interface (the BAR interface)
is exposed.

The structure is not optimal due to two reasons – the BAR modules do not have access to the cfg
interface, and if they need to be connected to physical I/O pins on the FPGA, four modules will
need to be modified (Top, Application, PIO and PIO_EP). Instead, the BAR hardware interface is
run through the PIO module to the Application module. The BAR hardware will then need to be
instantiated from here, as can be seen in figure 4.b.

Figure 4.b: The used structure (simplified).

It should be noted that the PIO functionality used does not support some of the more advanced
features that are possible with PCI Express. It only supports single DWORD memory read and write
transactions to a 32 bit memory space. Also, delayed responses are not supported, so only one
transaction can be running at a time.
As pointed out, all modules are generated using the Verilog language. This is not too practical
though, as VHDL is currently the only used HDL language at SDU. For this reason, the Application
module, which is the module expected to be modified the most, is rewritten using VHDL. The only
other module that would need modifications (except if for instance more functionality is needed
from the PIO module) would be the Top module, when external I/O pins are needed. As Verilog
and VHDL are rather similar, this is not seen as a problem though, as it should be easy to add the
few needed lines of code, without having to do a larger study on the syntax of Verilog.

Top

PIPE
(IP Core)

Application

PIO_EP
(Packet handler)

BAR interface

FPGA

PIO

PXPIPE, TRN & CFG TRN & CFG

TRN & BAR interface

TRN & BAR interface

PXPIPE

Journal 2, Creation of FPGA designs Page 4 of 7

Simon Falsig, SDU, FORK-project autumn 2007

5 The BAR hardware interface
The existing BAR interface in the example design consists of a 10 bit address bus, a 32 bit data bus,
byte enable signals, and write-enable and -busy signals. Before deciding on the specifications of the
interface to implement, some information was gathered from the project groups from journal 1. It
was determined that most projects at SDU do not use standardized interfaces like Wishbone1, in
spite of these making reuse of existing modules possible (or in any case, easier). Instead, most
projects simply use whatever interface is at hand, or the easiest to implement. It was therefore
decided to make the BAR interface as simple as possible, while still retaining enough functionality
to be usable with a large number of different BAR hardware modules.
The created BAR interface is based on the interface exposed by the sample PIO module. A few
control-signals have been added, and some signals multiplexed to allow the interface to work with
up to six BAR modules in one design. It is a master-slave setup, with the BAR modules as slaves,
and the PIO module as master. It consists of the following signals:
(Inputs are signals to the BAR modules, outputs are signals from the BAR modules. Shared implies
that all BAR modules are connected to the same signal, multiplexed implies that only the currently
selected BAR module is connected to the signal.)

- trn_clk: Clock signal, input, shared. This is the 62.5 MHz clock signal from the PIPE core,

which the interface is clocked in relation to.
- trn_reset_n: Reset signal, input, shared. This is the active-low reset signal of the transaction

interface, and is asserted if the DCM generating trn_clk looses its input clock.
- rd_addr: Read address bus (30 bit), input, shared. This provides the address for read

operations, and addresses DWORDs. It is therefore automatically DWORD aligned.
- rd_be: Read byte enable (4 bit), input, shared. This is a byte enable used when transmitting

data of 3 bytes or less, since rd_data will always be 32 bit. A logic ‘1’ signals that the
corresponding byte in read data is enabled.

- rd_data: Read data (32 bit), output, multiplexed. This is the data read from the BAR module.
- rd_en: Read enable (1 bit), input, multiplexed. This active high bit is used to signal a read

operation to the targeted BAR module.
- rd_busy: Read busy (1 bit), output, multiplexed. This active high bit is used by the BAR

modules to signal that a read is in progress.
- wr_addr: Write address bus (30 bit), input, shared. This provides the address for write

operations, and addresses DWORDs. It is therefore automatically DWORD aligned.
- wr_be: Write byte enable (8 bit), input, shared. This is a byte enable used when transmitting

data of 3 bytes or less, or when transmitting data that is not fully DWORD aligned. A logic ‘1’
signals that the corresponding byte in write data is enabled.

- wr_data: Write data (32 bit), input, shared. This is the data to write to the BAR module.
- wr_en: Write enable (1 bit), input, multiplexed. This active high bit is used to signal a write

operation to the targeted BAR module.
- wr_busy: Write busy (1 bit), output, multiplexed. This active high bit is used by the BAR

modules to signal that a write is in progress.
- bar_select: BAR select register (7 bits). This register contains the currently active BAR (one-

hot encoded, active high), and can thus be used as a select/enable signal for the BAR modules if
necessary.

1 Wishbone is an open-source hardware bus. The specification can be found in ”Datasheets\Wishbone_b3.pdf” on CD1.

Journal 2, Creation of FPGA designs Page 5 of 7

Simon Falsig, SDU, FORK-project autumn 2007

5.1 Read operation

An example read operation that reads from a negative edge clocked blockram can be seen in figure
5.1.a.

Figure 5.1.a: A read operation.

Data from rd_data is read into the PIO module on the first rising edge of the clock after rd_en goes
high where rd_busy is not set (the red line). If the BAR module is not able to drive rd_data with
valid data before the next rising edge of the clock after rd_en goes high, it will need to drive
rd_busy high until valid data is present on rd_data. This can be seen in figure 5.1.b.

Figure 5.1.b: A read operation using rd_busy.

Here the BAR module is not able to produce valid data within one clock cycle, and therefore needs
to set rd_busy high until valid data is present on rd_data.

trn_clk
1

0

rd_addr

rd_en

rd_data

1

0

1

0

1

0
1

0

rd_be

rd_busy
1

0

1

0
bar_select

trn_clk
1

0

rd_addr

rd_en

rd_data

1

0

1

0

1

0

1

0

rd_be

rd_busy
1

0

1

0
bar_select

Journal 2, Creation of FPGA designs Page 6 of 7

Simon Falsig, SDU, FORK-project autumn 2007

5.2 Write operation

An example write operation that writes to a negative edge clocked blockram can be seen in figure
5.2.a.

Figure 5.2.a: A write operation.

The red line indicates the point at which data from wr_data is read into the blockram. The data on
wr_data is only guaranteed to be valid as long as wr_en is high. wr_data remains high until the next
rising edge of the clock where wr_busy is not set. Therefore, if the BAR module is not able to read
in the data within one clock cycle, it will need to set wr_busy high until the write has been
completed, to signal to the PIO module that it needs wr_data to be kept valid for a longer period.
An example of this can be seen in figure 5.2.b.

Figure 5.2.b: A write operation using wr_busy.

trn_clk
1

0

wr_addr

wr_en

wr_data

1

0

1

0

1

0

1

0

wr_be

wr_busy
1

0

1

0
bar_select

VALID

trn_clk
1

0

wr_addr

wr_en

wr_data

1

0

1

0

1

0

1

0

wr_be

wr_busy
1

0

1

0
bar_select

VALID

Journal 2, Creation of FPGA designs Page 7 of 7

Simon Falsig, SDU, FORK-project autumn 2007

6 The designs
Four FPGA designs have been created for the project. These can be found as Xilinx 9.2 ISE projects
in the “Source\FPGA_Design” folder on CD1. The designs are further described in their respective
applicationguides. The projects are:

- Empty: The Empty project contains the described structure (including the PIPE and PIO

modules), but no BAR modules. It is meant to be used as a starting point for new designs using
the Spartan3 PCI Express Starter kit.

- IOControlDemo: This design builds on the Empty design. It includes the BAR module from the
original demo design, which can access the buttons and leds on the Spartan3 PCI Express
Starter kit board as BAR0, an 8 kB blockram as BAR1 and a PIPE core setup to match this.

- VGADemo: A design built on the Empty design. This uses a 24 kB blockram at BAR0 as a
framebuffer. An additional module reads the framebuffer and outputs it on the VGA port.

- DDRControllerTest: This design does not build on the Empty design. It consists of a DDR
memory controller connected to the DDR memory on the Spartan3 PCI Express Starter kit. A
testbench is included to verify that it is operational.

7 Conclusion
An FPGA design structure with a working PCI Express interface and an interface for hardware
modules has now been created. Up to six independent hardware modules are supported at a time,
through a multiplexed bus. The Xilinx Endpoint PIPE for PCI Express IPcore is used, which
implements a complete PCI Express protocol.
Using this structure, three designs have been created – a base design, Empty, without hardware
modules, to be used as a starting point for new designs, the IOControlDemo with modules
implemented to control the onboard leds and buttons and an 8 kB blockram, and the VGADemo
design demonstrating the use of the VGA port. The possibilities of using the onboard DDR RAM
memory for storage have also been investigated, and a test design, DDRControllerTest, has been
created. This has been brought up and running, and can successfully access the onboard DDR
memory. It is not implemented together with the PCI Express interface though. The designs are
further described in the applicationguides.
The performance will be evaluated when a driver has been created.

.

