
Journal 4, Performance test Page 1 of 4

Simon Falsig, SDU, FORK-project autumn 2007

Journal 4, Performance test

1 Objectives
The performance of the created set of drivers and applications for both Windows and Linux needs
to be tested. This will be done on both platforms under various environments.

2 Problem analysis
The theoretical maximum transfer speed across the PCI Express x1 interface is 250 MB/s in each
direction (data will only be transmitted in one way at a time during this test). It is however not
expected that effective transfer speeds of this magnitude can be reached with programmed I/O. As
the x86 architecture of the host system is limited to transfer 1 DWORD per read or write command,
there will be quite a bit of overhead. Just for the transaction layer, a read command consists of a
total of 7 DWORDs being transmitted (3 for the request and 4 for the completion), while a write
request consists of 4 DWORDs (4 for the request, no completion is sent as memory write is a posted
transaction). On top of this comes additional overhead from the datalink and physical layers. Also,
as both Windows and Linux use multitasking, it is not to be expected that a driver will be allowed
to transmit and receive data uninterrupted.
To test the performance, four different tests in various environments are performed. The tests are:

- Application-controlled write: A register on the Spartan3 board is repeatedly written 1000000

times using a for-loop in the application, which calls the write-register driver function for each
run through the loop. The execution time of the for-loop is then timed.

- Application-controlled read: Similarly, this performs 1000000 reads, using the same technique
as described above.

- Driver-controlled write: The two above tests will result in extra overhead as the driver is called
once for each of the 1000000 reads or writes. This test instead places the for-loop inside the
driver, so that only one request is send from the application. This requires a new function and
control code to be added to the drivers, including functionality to time the for-loops, and return
the time taken to the application.

- Driver-controlled read: This works in a similar way to the driver-controlled write, but is just
performing reads instead.

3 Software and FPGA design
The drivers and applications designed and created in journal 3 are used, with the mentioned
functionality added. The code for driver and applications can be found on CD1 in the folder
“Source\Windows_Device_Drivers_and_Applications\Performancetest” for the Windows version,
and in “Source\Windows_Device_Drivers_and_Applications\Performancetest” for the Linux
version. The IOControlDemo FPGA design is used again. Further info can be found in the
“Performance test” applicationguide.
Below is described how the timing is performed.

3.1 Timing in Windows, application-control

For the application-controlled test in Windows, the GetTickCount() function is used. This returns
the number of milliseconds elapsed since the system was booted. By calling this function right
before and right after the reads/writes, the number of milliseconds used can be found by taking the
difference between the end and start times. Roll-over is not considered an issue, as this only
happens every ~50 days.

Journal 4, Performance test Page 2 of 4

Simon Falsig, SDU, FORK-project autumn 2007

3.2 Timing in Windows, driver-control

GetTickCount() is only available from user-mode applications, so instead the kernel-mode function
KeQueryTickCount() is used. This returns the number of ticks since system boot. The amount of
ticks it takes to get through the loop is returned to the application as the first value in pBuffer. The
duration of a tick varies from system to system, so this needs to be send back to the application also.
The tick duration is retrieved through KeQueryTimeIncrement(), and is stored as the second value in
pBuffer.

3.3 Timing in Linux, application-control

Under Linux, the function GetTimeOfDay() is used for user mode timing. It returns the current time
as the number of seconds and microseconds since 1/1 1970.

3.4 Timing in Linux, driver-control

Similarly to KeQueryTickCount(), the amount of ticks after system boot are used here. In Linux,
this value is stored in the system-wide jiffies variable. The tick duration can be derived from the
system-wide HZ variable, which specifies the number of ticks per second. A separate driver-call is
created for returning the HZ value to the application.

4 The test
The tests will be performed in the following environments:

- Windows, checked build, HT enabled
- Windows, checked build, HT disabled
- Windows, free build, HT enabled
- Windows, free build, HT disabled
- Linux, console, HT enabled
- Linux, console, HT disabled
- Linux, kde, HT enabled
- Linux, kde, HT disabled

The reason for testing with HyperThreading (HT) both enabled and disabled is that it might affect
the number of necessary context switches, and thereby impact performance. HT can be enabled /
disabled through the system bios at boot.
It should be noted that due to differences in the time measurement functions, the resolution of the
timing varies between Windows and Linux, and between user- and kernel-mode.
All tests are run three times, and the average time is used. The complete set of results can be seen in
the folder “Data\Performance test” on CD1. The effective transfer speeds (the amount of actual
data transferred) can be seen in figure 4.a.

Journal 4, Performance test Page 3 of 4

Simon Falsig, SDU, FORK-project autumn 2007

Figure 4.a: The results of the test. All graphs show the effective transfer speeds, values are in MB/s.

The first thing to notice is that the transfer speeds, as expected, are far away from the theoretical
maximum of 250 MB/s. A maximum effective write speed of about 30 MB/s, and a maximum
effective read speed of about 2.5 MB/s are achieved, when using the driver-controlled approach.
With application-control, and thus a substantial increase in the amount of overhead, about 7 MB/s
for writes and 2 MB/s for reads is reached with Linux and less than 1 MB/s either way under
Windows. The reason for the larger performance hit with application-control on Windows than on
Linux, is probably due to differences in the way device drivers are accessed, and/or the internal
scheduling of processes within the kernels. This is also evident as the tests with driver-controlled
writes and reads, for which the kernel-mode code on Linux and Windows is nearly identical, result
in very similar performance for both Windows and Linux.
Recall that, considering the overhead, the actual transfer speed for the write operations is roughly 4
times higher than the effective speed, while it is about 7 times higher for the read operations. This is
not enough to explain the large difference between read and write speeds though. But the difference
could be due to the read operations being non-posted, resulting in the OS switching to another
process while waiting for a response to the read request. The write operations however, are posted
transactions, and can thus be performed without needing to wait.
The difference between checked and free builds under Windows is also clear. With free builds, all
debug information (including test output to the debug console) is stripped from the driver. This does
not have much of an impact with driver-control, as the for-loops do not include any debug
messages. The single-register versions of the write and read functions used with application-control
do however write a line to the debug-console each time they are called, resulting in the lowered
performance.

Write, driver-controlled

31,447

31,447

31,789

31,789

31,971

29,387

30,518

30,518

0,000 5,000 10,000 15,000 20,000 25,000 30,000 35,000

Read, driver-controlled

2,400

2,404

2,390

2,400

2,348

2,333

2,325

2,318

0,000 0,500 1,000 1,500 2,000 2,500 3,000

Write, application-controlled

6,591

8,262

6,436

7,587

0,382

0,382

0,895

0,877

0,000 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

Read, application-controlled

1,815

1,880

1,812

1,840

0,335

0,336

0,653

0,650

0,000 0,200 0,400 0,600 0,800 1,000 1,200 1,400 1,600 1,800 2,000

Linux, Console, HT enabled Linux, Console, HT disabled Linux, kde, HT enabled Linux, kde, HT disabled

Windows, checked, HT enabled Windows, checked, HT disabled Windows, free, HT enabled Windows, free, HT disabled

Journal 4, Performance test Page 4 of 4

Simon Falsig, SDU, FORK-project autumn 2007

It is also interesting to see that while not having much impact in most of the tests, enabling HT
actually noticeably decreases performance under Linux with application-control. The reason for this
is unknown, as HT is notorious for giving performance boosts under certain conditions, while in
other cases slowing things down.

5 Conclusion
The performance of the created drivers and applications has now been tested. As there is a
substantial amount of overhead present, in both the host OS and in the PCI Express transfer itself,
the performance is far away from the theoretical maximum of 250 MB/s. By using the driver-
controlled approach and thus minimizing the overhead in the host OS, a best-case transfer speed of
~30 MB/s when writing to and ~2.5 MB/s when reading from the board has been achieved on both
platforms. This only works for large transfers where all data is transferred to/from the driver in one
request. When transferring single DWORDS, the additional overhead of calling the driver has a
higher influence, and drops the transfer speeds to well below 1 MB/s in both directions on
Windows, and to around 7 MB/s writing and 1.8 MB/s reading on Linux.
Sadly this is far away from the desired transfer speed of 180 MB/s. It should therefore be
investigated if it is possible to improve on the current performance.

